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Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled
Bose-Einstein condensates
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The dynamics of the three coupled bosonic wells~trimer! containingN bosons is investigated within a
standard~mean-field! semiclassical picture based on the coherent-state method. Various periodic solutions
~configured asp-like, dimerlike, and vortex states! representing collective modes are obtained analytically
when the fixed points of trimer dynamics are identified on theN5const submanifold in the phase space.
Hyperbolic, maximum and minimum points are recognized in the fixed-point set by studying the Hessian
signature of the trimer Hamiltonian. The system dynamics in the neighborhood of periodic orbits~associated
with fixed points! is studied via numeric integration of trimer motion equations, thus revealing a diffused
chaotic behavior~not excluding the presence of regular orbits!, macroscopic effects of population inversion,
and self-trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic
orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the presence of
chaos.

DOI: 10.1103/PhysRevE.67.046227 PACS number~s!: 05.45.2a, 03.75.Kk, 03.65.Sq
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I. INTRODUCTION

Remarkable progress in experimental design has b
made since the first direct observation of Bose-Einstein c
densation in dilute atomic gas@1#. One of the most promising
developments concerns the construction of experimental
vices in which condensates, achieved within complex geo
etries, interact with each other giving rise to quantum effe
that are observable at the macroscopic level@2–4#. In this
respect, one should recall, for example, the~superfluid! bo-
son Josephson-junction arrays obtained by means of op
lattices that trap weak interacting Bose-Einstein condens
~BECs! in periodic arrays of potential wells@5#. In parallel
with the experimental work, increasing attention has be
devoted theoretically to studying the dynamical behavior
low-energy states@6# in arrays of Bose-Einstein condensat
where the number of lattice sites~namely, the potential wells
occupied by the condensate! is very large@7,8#.

Opposite situations, corresponding to ‘‘lattices’’ forme
by two or three interacting wells, have been investigated
well in various recent papers~see Refs.@9–14#!. In particu-
lar, the two-well system~dimer! has been analyzed tho
oughly from both the semiclassical~mean-field! and the
purely quantum viewpoint in Refs.@10,14#, respectively.
Such investigations have revealed how the nontrivial str
ture of dimer phase space causes many significant phen
ena such as the symmetry-breaking effect~issuing oscillation
modes that are isoenergetic but nonequivalent!, the onset of
p-phase oscillations, theself-trappingof boson populations
and, quantum mechanically, the occurrence of~parameter-
dependent, nondegenerate! doublets in the energy spectru
entailing periodic self-trapping.

The addition of a third well to the dimer system sugge
that an even richer dynamics should be observed: The re
ing system, in fact, is no longer integrable. This fact and
forthcoming realization of such system~due to the great ex
perimental progress in the confinement techniques! indeed
1063-651X/2003/67~4!/046227~16!/$20.00 67 0462
en
n-

e-
-

ts

al
es

n
f

s

-
m-

s
lt-
e

prompt the theoretic study of the three-well system~trimer!
that is the central topic of this paper. In particular, the stu
of trimer offers the possibility to investigate regimes of sp
cial interest, where the competition of the~purely quantum!
integrable evolution with the~classical! chaotic behavior
takes place, in the limit of large number of atoms.

The connection between the quantum and the semicla
cal picture of many interacting bosonic wells has been ill
trated in Ref.@10# and, in view of the closed link between a
array of interacting BECs and the Bose-Hubbard~BH! model
@10,15#, in Ref.@16# within the BH model theory. We wish to
observe that the semiclassical approach~corresponding to
describing condensates within the Bogoliubov approxim
tion! is appropriate for interacting wells with macroscop
boson populations. However, the systems recently obta
~where mesoscopic numbers of bosons per wells@4# have
been achieved in condensates distributed among many w!
might be best modeled by using the space-mode approx
tion @9,17# stemmed from the second-quantized boson-fi
theory.

Compared with the dimer nonlinear behavior, indeed
system of three interacting bosonic wells exhibits an un
pectedly rich phenomenology and provides an interesting
search topic, both theoretically and experimentally. In fa
despite the simplicity of the model, the trimer dynamics
affected by a strong inner instability leading to the cha
onset. This feature originates from the combination of
model nonlinear character with the nonintegrable nature
distinguishes trimer dynamics within extended regions of
phase space. In respect of this, the solutions of the tri
dynamical equations@displaying nonlinear periodic oscilla
tions ~dimerlike orbits! with possible self-trapping effect#
recognized in Refs.@11,13# must be viewed as special sub
regimes in which dynamics is integrable. Concerning the
stability of trimer dynamics, we wish to recall that the pre
ence of homoclinic chaos has been revealed for
asymmetric trimer in Ref.@18#. Also, the trap anisotropy of a
condensate, which induces space separation, has been se
©2003 The American Physical Society27-1
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an instability source in Ref.@19#. An alternative study of
such instability is in progress, based on the geometrical
proach recently proposed in Refs.@20,21#. Such approach
consists in tackling the Hamiltonian chaos relying on the f
that the geometry involved by the trimer Hamiltonian is th
of the Finsler spaces@22#. At the quantum level, the surviva
of trimer breather configurations has been investigated
Ref. @23#, while trimerlike systems~or systems involving
more complex bosonic lattices! have been studied recent
@24,25# within the quantum-computation physics.

In the present paper, we perform a systematic analysi
the trimer dynamics directed to ascertain that the abscenc
integrability generates chaos and that this dominates the
teractions of three BECs modeled in a standard semiclas
picture. A rich scenario of dynamical behaviors emerg
from our analysis, which confirms the extremely structur
character of trimer dynamics and represents the natural p
ecution of the work of Ref.@13#, in which we focused our
attention on the special dimerlike~integrable! regime of tri-
mer and on the self-trapping effect.

Moreover, our analysis furnishes a complete scenario
the trimer dynamical regimes and of their dependence on
external parameters occurring in the Hamiltonian~notice that
the control on the parameters’ dependence is expected t
operationally useful in relation to experiments!. It appears as
well to be topical in relation to the study of the dynamics
solitons@8# and of vortices@26# on one-dimensional chain
of BECs as well as of experimental architectures obtai
recently @4#. The observation of such chain excitations,
fact, must take into account the possible destructive actio
inner instabilities whose influence is clearly manifested
the trimer chain. We emphasize the fact that the trimer ch
is the simplest possible situation in which interacting BE
turns out to be governed by nonintegrable equations.
dimer dynamics, in fact, is completely integrable.

The paper layout is the following. In Sec. II, we revie
the derivation of the space-mode Hamiltonian for thr
coupled wells from the quantum field theory of bosonic fl
ids in the dilute-gas approximation, and present the semic
sical picture that describes coupled boson wells with mac
scopic populations. In Sec. III, we identify the set of fixe
points of the trimer Hamiltonian equations and show h
such points are associated to periodic solutions~representing
collective modes! owing to the dynamically conserved tot
boson numberN. Section IV is devoted to study the secon
variation ~with N5const) of the energy function for suc
extremal configurations in order to make explicit their n
ture. In Sec. V, we perform a dimensional reduction of trim
dynamics by defining a new set of canonical variab
whereby the constant of motionN is incorporated in the dy-
namical equations. This paves the way to the implementa
of the Poincare´ sections’ method. The chaos onset in t
trimer dynamics is investigated in Sec. VI. First, in a qua
tative way, by constructing the Poincare´ sections for trajec-
tories whose initial conditions are chosen in proximity of t
fixed-point configurations identified in Sec. III. Then, qua
titatively, by measuring the maximum Lyapunov exponent
such trajectories. Section VII contains concluding rema
and comments on future work.
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II. TRIMER DYNAMICS

The model for a chain~or more complex structures! of M
interacting bosonic wells can be derived from the quant
field theory for boson fluids~with a nonlocalc4 term! by
implementing theM-~space!mode approximation@15#. If the
boson fluid is a diluite gas ofN interacting bosons trapped i
an external potentialVe then its dynamics is generated by th
local boson-field Hamiltonian@17,28,27#

Ĥ5E dr ĉ
†
~r !FVe2

\2¹2

2m
1

U0

2
ĉ

†
~r !ĉ~r !G ĉ~r !,

where m is the boson mass,U054p\2a/m takes into ac-
count the two-body interaction strength, anda is thes-wave
scattering length. The fieldc(r ) @ĉ1(r )# is the Heisenberg
field operator that destructs~creates! bosons at positionr .
The nonlinear term has been written in the usual norm
ordered form. In order to work out the trimer Hamiltonia
we state some assumptions: First,Ve is a three-well
symmetric-shaped potential. Second, the lowest-energy l
of each well~within the approximation ofVe in terms of a
single-well parabolic potential! must be well separated from
the higher-energy levels@17#. Third, the binary particle inter-
actions is not strong enough to significatively change
latter assumptions.

Some further approximations are necessary to make
plicit the ground-state structure inĤ. Let r i ( i 51,2,3) be the
locations of the minima ofVe and letVj5V(r2r j ) be the
parabolic approximation to the potential in thej th minimum,
so thatVe(r ).V(r2r j ) when r.r j . Also, let us introduce
the eigenstatesuj that represent the normalized single-bos
ground states with energyE0 of the local parabolic potentia
Vj . These states are only approximatively orthogonal
cause of*d3r ū juk5d jk1Rjk but the residueRjk is a quan-
tity exponentially suppressed depending on the overlap
tweenuj anduk . The analysis is restricted to those potentia
for which Rjk!1 thus making negligible such contribution

The picture of the system thus resulting suggests
the boson field operator can be expanded asĉ(r ,t)
5S i ūi(r )âi(t), whereâi(t) @ âi

†(t)# is the annihilation~cre-
ation! boson operator~associated to the space-mode stateui)
that satisfy the commutation relation@ âi(t),âk

†(t)#5d ik . By
substituting this expression in the many-body hamilton
one can obtain, to the lowest order in the overlap betw
the single-well modes, the quantum trimer Hamiltoni
@10,11#

H35(
i

@U~ni21!2v#ni2
T

2 (
^ i , j &

~ai
†aj1aj

†ai !,

where the site indexi , j 51,2,3, v52E0, and the operators
ni8ai

†ai count the number of bosons at sitei. Also, in H3

T52E d3r ū j@Vj2Ve#uj 61 , U5
U0

2 E d3r uuj u4,
7-2
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CHAOTIC BEHAVIOR, COLLECTIVE MODES, AND . . . PHYSICAL REVIEW E67, 046227 ~2003!
represent the~interwell! hopping amplitude and the streng
of the Coulomb on-site repulsion, respectively@9,17#.

The quantum dynamics involved by HamiltonianH3 can
be cast in a classical form by representing the system q
tum state through a trial stateuZ& written in terms of Glaub-
er’s statesuzi& ~defined byai uzi&5zi uzi&). By implementing
the time-dependent variational principle~TDVP! and the
procedure discussed in Refs.@16,29# on uZ&5P i uzi&, one
obtains the effective Hamiltonian@10#

H3~Z,Z* !ª^ZuH3uZ&

[( j 51
3 FUuzj u42vuzj u22

T

2
~zj* zj 111c.c.!G

~1!

( j 51[4 on the trimer chain! with the equations

i\ ż15~2Uuz1u22v !z12
T

2
~z21z3!,

i\ ż25~2Uuz2u22v !z22
T

2
~z31z1!, ~2!

i\ ż35~2Uuz3u22v !z32
T

2
~z11z2!.

Such equations forzj ~notice that zj[^Zuaj uZ& and zj*
5^Zuaj

†uZ&) can be calculated fromH3 via the Poisson
brackets$zk* ,zj%5 idk, j /\ furnished by the TDVP method
Those forzj* are easily obtained by complex conjugatio
Various aspects concerning the special dimerlike subreg
of Eqs. ~2!, in which trimer dynamics is integrable, hav
been studied in Refs.@11,13#.

III. FIXED POINTS AND PERIODIC ORBITS

The distinctive features that characterize the dynamic
a given Hamiltonian system can be recognized by explor
the structure of its phase space. The first step to do this@33#
is to locate the fixed points and to find their dependence
the model parametersU, T. The fixed points are derived in
the present section based on Eqs.~2!, whereas the nature o
such points is studied in the following section.

The fixed-point equations for the trimer are obtained
setting żj[0 in Eqs.~2!. Since the trimer dynamics is con
strained by the constant of motionN5uz1u21uz2u21uz3u2,
one must incorporate explicitly the restriction to the pha
space submanifold defined byN5const through a Lagrang
multiplier x. This just requires that one considers the var
tions ofH32xN in place of that ofH3. The resulting equa-
tions are

05S 2Uuzj u22m1
T

2D zj2
T
2

Z, ~3!

where j 51,2,3, andZªz11z21z3 , m:5x1v have been
introduced. Therefore, any fixed point, namely, any vec
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(zi)[ (h1 ,h2 ,h3) that satisfies Eqs.~3!, provides, at the
same time, a dynamically active solution of Eqs.~2! repre-
sented byzj (t)5h j exp@ixt/\#. Despite its time dependence
such a periodic orbit represents a~one-dimensional! ex-
tremal configuration ofH3 on the hypersurfaceN5const.
The solutions of Eqs.~3! can be grouped in various class
the first of which is represented by the case

Z5(
j

zj50.

The remaining cases are obtained from Eqs.~A3! and ~A4!,
where zi can be replaced with the real quantitiesxi ~see
Appendix A!. Such cases are given by

x15x25x3Þ0,

x152x2Þx350,

x15x2Þx3Þ0.

Such configurations are discussed below@30#.

A. Ground-state configurations

When x15x25x3, Eqs. ~A3! and ~A4! are satisfied.
Based on Eq.~A2! combined with the conserved quantityN,
one finds thatxj56AN/3 which provides

zi5AN/3 exp~ iF! ~ i 51,2,3!, ~4!

and 3m52UN23T. The energy of such configuration
~they are shown to represent the ground state in Sec. II! is
given by

Egs5
1

3
UN22TN. ~5!

The ground-state phaseF is arbitrary since it represents
symmetry of the model. Also, the fact thatzj5uzj uexp(ifj)
have the same phasef j[F reproduces the symmetry brea
ing phenomenon that distinguishes the minimum energy s
and, particularly, the vanishing of the phase difference~be-
tween closed points! in superfluid media. Such two feature
which are known to characterize the superfluid ground s
of BH lattice model, naturally extend to the trimer model
condensates in our semiclassical picture. As regards Eqs~2!,
they are solved byzj (t)5AN/3 exp@i(F1xt/\)#, with x5m
2v, that describes the ground-state collective mode.

B. Vortexlike configurations

The situation in whichZ50 leads to a special configura
tion. In this case Eqs.~3! reduce to 05(2Uuzj u22m
1T/2)zj implying, in turn, that

uzj u25
2m2T

4U
, ; j , m5

4NU13T
6

,

where the value ofm is derived fromS i uzi u25N. As a con-
sequence of the independence ofuzj u on the site index, the
7-3
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condition Z50 is realized only if the phases ofzj

5uzj uexp(iuj) are such thatu j (k)52p jk/31F0, where k
51,2, andF0 is an arbitrary phase. This configuration re
resents a particular case of the vortex state discussed fo
Bose-Hubbard model on aM-well chain lattice (M.2) in
Refs. @26# and @10#. The energy associated with the vorte
states,

zj~k!5AN/3 exp@ iu j~k!#, ~6!

is given by

Ev5
UN2

3
2TN cosS 2p

3
kD5

UN2

3
1

TN

2
, ~7!

while dynamics issued from Eq.~2! is described by the so
lution zj (t)5zj (k)exp@it(m2v)/\#.

C. Configurations with a single depleted well

These configurations are characterized by the presenc
a single depleted well~SDW!. Without losing generality, one
can choose the second well, so that one hasx1 ,x3Þ0 and
x250. This case can be faced based on Eqs.~A1!: to satisfy
E2(x)50 one must imposex352x1, which entails, in turn,
that the equationE1(x)50 is equivalent to the equatio
E3(x)50. The latter, together with the constraintN5x1

2

1x3
2, implies thatx156AN/252x3 , x250, which pro-

vides the fixed points

z15AN/2eiF, z250, z35AN/2ei (F1p), ~8!

with m[2Ux1
21T/2. Their energy is

EDW5
1

2
UN21

1

2
TN. ~9!

Permutations of site indicesj of zj furnish other five fixed
points of the same type. In view of state~8!, it is worth
noting that SDW configurations have the same structure
thep statesoccurring in the dimer dynamics@10#, where the
phases of each well keep a constant phase differencep in the
course of time evolution. Solutionszi(t)5zi(0)exp@it(m
2v)/\#—with zi(0) given by Eqs.~8!—exhibit this property.

D. Dimerlike configurations

For such states the variablesxj ~recall thatxj
2 is the boson

number of thej th well! satisfy the conditionxi5xjÞxk .
Three cases are thus obtained through index permutatio
general, since three fixed points turn out to be associa
with each dimerlike configuration~namely, to each choice
xi5xjÞxk), nine fixed points are finally found in the dime
like class.

To deal with an explicit case, we shall consider the fix
points of the casex15x2Þx3. Owing to its complexity, their
derivation is described in Appendix B. Here, we discuss
results obtained. Fixed points depend on the paramett
ªT/NU and are representable as points (x1 ,x2 ,x3)PR3 on
04622
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2 . Their expressions

read

A1ª„a1 ,a1 ,2~a1 /ua1u!AN22a1
2
…,

A2ª„a2 ,a2 ,2~a2 /ua2u!AN22a2
2
…, ~10!

A3ª„a3 ,a3 ,2~a3 /ua3u!AN22a3
2
…,

where

a356F Np2

112p2G 1/2

, an56F N

21qn
2G 1/2

, ~11!

andn51,2. Parametersqn andp are defined as implict func
tions of parametert through systems~B3! and~B4!, respec-
tively. In particular, the cubic equation

t~21q2!~21q!14q~11q!50, ~12!

derived from Eq.~B3!, with qP@21,0# furnishes thet func-
tions q1(t), q2(t) corresponding to the real roots of Eq
~12!. Notice that 21<q1(t),q2(t)<0 for t,t* ,
whereas, fort.t* , there are no solutions. The valuet* ,
whereq1(t* )5q2(t* ) ~and A1[A2), is calculated in Ap-
pendix B. Instead, system~B4!, with pP@21/2,0#, always
exhibits a single solutionp(t) that is carried out from the
equation

t~112p2!~112p!14p~11p!50. ~13!

The dependence on physical parametersT, U, N of A1(q1),
A2(q2), A3(p) by means of parametert is thus established

PointsAi found in this way generate, by varyingt, three
curves on the sphere withN5const@in view of the sign6 in
Eqs.~11! they actually are six#. These become 18 when con
sidering the fixed points generated by index permutatio
This process is described in Appendix B, where the act
number of dimerlike fixed points is shown to reduce to 1
Such curves@parametrized byt via p(t) andqn(t)] can be
proven to never intersect with one another except for
special caset5t* , whereA1[A2. This coalescenceeffect
is discussed below.

If the values ofqn andp for some givent<t* are carried
out explicitly, the energy forAi ,

Ed5U@N216ai
424Nai

2#2T@ai
222aiAN22ai

2# ~14!

( i 51,2,3), is obtained via formulas~11!.
We conclude illustrating the physical situations that c

respond to configurationsA1 , A2, andA3 when t changes.
Also, we compare them to thepure-dimerscenario@10#. Let
us start witht→0. One hasq1521 and q25p50 that
entail

A1~21!ª6~AN/3,AN/3,2AN/3!,

A2~0!ª~AN/2,AN/2,0!, ~15!
7-4
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A3~0!ª~0,0,AN!,

respectively. By increasingt, A1(q1) andA2(q2) get closer
and closer (A15A2 for t→t* ). Whent.t* only the fixed
point A3(p) survives. In particular,t→` implies p5
21/2, so that@from the third equation of Eqs.~10!# one
obtains

A3S 2
1

2D56~AN/6,AN/6,2A2N/3!. ~16!

SinceA3(p) @as well asB3(p), C3(p), obtained via index
permutation~see Appendix B!# is shown to be a maximum in
Sec. IV, indeedA3(p) appears to be comparable with th
t-dependent maximum of the~pure! dimer model @10#,
where a unique well ends up being filled whent→0. In-
stead, whent is increased, no merging ofA3(p) with other
maxima@e.g.,B3(p), C3(p)] happens as that observed in th
~pure! dimer model. In this model, in fact, a~macroscopic!
coalescence effect takes place~see, Ref.@10#! since two
maxima merge in a unique one whent.1 @the opposite
effect ~bifurcation! occurs fort,1]. As shown in Appendix
A, such effects involving maxima pairs do not distingui
trimer dynamics.

A different macroscopic effect happens, however, in
trimer phase space. This is caused by the merging of dis
saddle points~e.g.,A1 , A2) discussed above, that disappe
for t.t* . Since chaotic behavior develops around sad
points, their coalescence should entail an evident local re
larization of dynamical behavior.

As a final remark, we wish to observe that sta
A1(21) exhibits the same per-well boson distribution of t
ground state. Such two states differ uniquely owing to
phase of the third well. Similarly, stateA1(0) and thep-like
state (AN/2,2AN/2,0) just differ owing to the opposite
phase of the second well. Despite their identical boson
tribution, such situations will exhibit very different behavio
thus confirming the profound influence of the interwell pha
differences in distinguishing dynamical states.

IV. CHARACTER OF FIXED POINTS

In this section, we consider the stability character of fix
points just identified. Such a character is recognized
studying the second variation of the energy function on
hypersurface defined byN5const. Explicitly, one should
analyze the signature of the quadratic form associated to
Hessian ofH3 ~with N5const) in each fixed point. Being
this process rather technical, we mainly develop it in App
dix D. Below, after showing how the separation ofH3 in two
independent~local! subhamiltonians simplifies remarkab
the stability analysis, we summarize the results obtained

To simplify H3, it is advantageous to introduce the loc
variablesj j5zj2v j , wherev j are the coordinates of som
given fixed point. Then, neglecting third and fourth ord
terms,H3 takes the form
04622
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H35H3~v !1(
i 51

3

~2Uuv j u22m2T!uj i u2

1(
j 51

3

U~v j* j j1v jj j* !21
T

4 (
iÞk

uj i2jku2, ~17!

which undergoes the further simplificationv i5v i* →xi when
one recalls that the phase factor ofv iPC is a constant that
can be absorbed byj j . This fact allows us to separateH3 in
a q-dependent part and ap-dependent part, withj jªqj
1 ip j . By making explicit the latter definition inH3, we find

H35H01h~q;6U,T,m!1h~p;2U,T,m!, ~18!

whereH0ªH3(v), and

h~q;6U,T,m!ª(
i j

~Mq! i j qiqj , ~19!

h~p;2U,T,m!ª(
i j

~M p! i j pipj . ~20!

Dynamical matricesMq andM p are defined as

Mq52
T

2 F D1 1 1

1 D2 1

1 1 D3
G , ~21!

M p52
T

2 F d1 1 1

1 d2 1

1 1 d3
G , ~22!

with D jª2(m26Uxj
2)/T and d jª2(m22Uxj

2)/T. Hence,
the diagonalization of the~local! quadratic form associate
to H3 can be performed in a separate way in Eqs.~19! and
~20!. Further simplifications come from the fact that matr
M p is proven to always have a vanishing eigenvalue~see
Appendix C!, while, due to the conserved quantityN
5( i uzi u25const, the induced local constraintq1x11q2x2
1q3x350 makes h(q;2U,T,m) dependent only on two
variablesqi ~see Appendix D!.

The stability character for ground states, vortex sta
SDW states, and dimerlike states is studied explicitly in A
pendix D. The calculation of theH3 second variation and
when this is necessary, of Hessian eigenvalues provide
following scenario.

~i! States withx15x25x3 are energy minima.
~ii ! Vortex configurations are saddle points.
~iii ! SDW configurations are saddle points.
~iv! Dimerlike states exhibit two saddle points and o

maximum point for 0,t,t* .
In the last case the merging of the two saddle points

form a regular point is enacted fort→t* . Thus, for t*
,t, a single maximum survives.
7-5
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V. MAPPING OF DYNAMICS ON
THE REDUCED PHASE SPACE

We develop a both qualitative and quantitative analysis
the chaotic behavior of the trimer based on the Poincare´ sec-
tion method. After performing a qualitative study of th
periodic-orbit instability, we effect a quantitative analysis
measuring the very chaos’ indicator, namely, the Lyapun
exponent of every single orbit chosen near a period one
this end, we introduce a more suitable coordinate sys
involving a symplectic reduction of dynamics.

Hamiltonian ~1! depends on three complex degrees
freedom and commutes with the boson numberN. This fact
as well as the structure of coupling term inH3 permit us to
reduce from six to four the number of~real! canonical coor-
dinates. The numerical integration of Eqs.~2!, thus, furnishes
a system picture consisting of a trajectory in a fou
dimensional~4D! reducedphase-spacePPC3. In P, a Poin-
carésection~PS! is the figure made by the points where
trajectory cut a 2D reference plane. The new set of canon
coordinates used to construct the PS embodies explicitly
conserved quantity( i 51

3 uzi u25N. Complex coordinateszi

5Ani exp(iui) are replaced by

f15u22u1 , j15~n21n32n1!/N,

f25u32u2 , j25~n32n12n2!/N, ~23!

c5~u31u1!/2, N5n11n21n3 ,

which obey the canonical Poisson brackets

$f i ,j j%522d i j /N, $f i ,N%50,
~24!

$c,j j%50, $c,N%521.

With such new variables@31# H3 becomes

E5
2

UN2
H~j1 ,j2 ,f1 ,f2!5E01j1

21j2
22j1j22j11j2

2tA~12j1!~j12j2!~11j2!F cosf1

A~11j2!
1

cosf2

A~12j1!

1
cosf12

A~j12j2!
G , ~25!

in which f12ªf11f2 , E05122m/(UN) ~the associated
Hamiltonian equations are contained in Appendix E!. In
terms of coordinates (j1 ,j2 ,f1 ,f2) the ground-state con
figuration ~4! and vortexlike fixed points~6! correspond to

~ 1
3 ,2 1

3 ,0,0!, ~ 1
3 ,2 1

3 , 2
3 pk, 2

3 pk!

(k51,2), respectively. Dimerlike fixed points@consider, e.g.,
A1 in Eq. ~10!# are given by

~j1 ,2j121,0,p!,
04622
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2(t)/N anda1(t) is defined by Eqs.~11!,
whereas SDW states can be expressed as (0,0,w,p2w) for
n250.

Operationally, the motion equations~2! are numerically
integrated by using a first-order bilateral symplectic schem
the algorithm precision is checked by monitoring the co
served quantities, that is, the system energy and total num
of bosons. Trajectories can be traced in the phase spaceP in
terms of j1 , j2 , f1, and f2. For any given value of the
reduced energy, Hamiltonian~25! defines a 3D hypersurfac
in P. The 2D surface used to construct a PS then is obtai
by firming the value ofj2 to a constant. Hence, PS is mad
by coordinates (j1 ,f1) of the points’ set in which trajecto
ries cut the selected 2D surface.

Discussion of numerical results

We present the results of the numerical analysis aime
investigating the phenomenology of the trimer dynamics
proximity of fixed points–these identify with the period
orbits that stationarizeH3 with N5const—calculated in Sec
III. The Hamiltonian parameters chosen for the numeri
simulations are

t5T/NU50.1, v50. ~26!

Simulations have been carried out by using an integra
time step of order 131024, while the total number of time
steps employed in constructing each orbit is of order 228. For
each periodic orbit a PS has been selected by settingj2
5const, dj2 /dt.0 and the reduced energyE52E/UN2

5const; on this section we have considered samples of a
100 initial conditions~IC!. Also, the maximum Lyapunov
exponent~MLE! has been measured for each trajectory
the samples associated to the extremal periodic orbits.

Ground state. The PS of this case is fixed by the conditio
j2521/3. About 100 initial conditions have been chosen
the j12f1 plane, placed close to the point (j1 ,f1)
5(1/3,0). The energy of the corresponding trajectories iE
.0.47. Figure 1 shows that all the trajectories are regula

FIG. 1. Poincare´ section atE.0.47 andj2521/3. In the neigh-
borhood of the ground state, the phase-space trajectories are re
7-6
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CHAOTIC BEHAVIOR, COLLECTIVE MODES, AND . . . PHYSICAL REVIEW E67, 046227 ~2003!
the phase spaceP. Their regular character appears to
consistent with the periodic character shown by the osc
tions of populationsni5uzi u2 ~see Fig. 2! of each condensate

Vortexlike initial conditions. The choicej2520.3, E
.0.77 distinguishes the PS of the present case. The in
conditions for the trajectories have been chosen close to
fixed points (j1 ,f1)5 (1/3,2kp/3), k51,2 ~vortex state!.
Since no difference distinguishes the PS withk51 and that
with k52, we restrict our attention tok51. Figure 3 shows
the presence of both regular and chaotic trajectories@Fig. 4
supplies two examples, one for each orbit type#. It shows as
well that the PS points related to chaotic trajectories are
tributed in a region well separated from that occupied
points generating regular orbits. In particular, the PS d
played in Fig. 3@together with other PS involving slightly
different j2 (.21/3)] suggests that the vortex-state fix

FIG. 2. Typical time evolution of the condensates’ populatio
related to a motion with initial conditions close to a ground-st
configuration. The solid, dashed, and dotted lines refer ton1(t),
n2(t), andn3(t), respectively. The dynamics appears to be perio
~within the simulation time scale!.

FIG. 3. Poincare´ section atE.0.77 andj2520.3 for orbits
close to a vortexlike fixed point. Even if some regular orbits a
present, phase-space trajectories show a dominating chaotic ch
ter.
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point is basically surrounded by chaotic orbits. In Fig. 3,
reach the nearest regular orbits starting fromj151/3, f15
22p/3, a finite variation of bothj1 andf1 is necessary.

When this change is carried out the trimer-population
cillations change in a significant way. The time evolution
condensate populationsni ( i 51,2,3) related to the noncha
otic orbit of Fig. 4 is illustrated in Fig. 5 and confirms it
regular character. By considering IC closer and closer to
vortex-state position such a character is progressively l
This is shown in Fig. 6 that plots populationsni , as a func-
tion of time, for the chaotic trajectory of Fig. 4.

The regular orbit of Fig. 4 involves an evidentself-
trapping effect provided their IC are enough far from
(j1 ,f1)5(1/3,22p/3). This is clearly manifested in Fig. 5
where ni(t)’s oscillate in such a way thatn2(t),n1(s),
n3(s), ; t, ; s: a stable gap, in fact, separatesn2 from n1 ,
n3. On the contrary, no stable gap is involved, in general,
chaotic orbits~see Fig. 6! that develop large oscillations o
the whole range ofni . The fact that, in average,ni.1/3 is

s
e

c

rac-

FIG. 4. Representation of a regular orbit~identified by the al-
most continuous line! and of a chaotic one chosen among those
the PS of Fig. 3.

FIG. 5. Time evolution of condensate populationsn1(t) ~solid
line!, n2(t) ~dashed line!, and n3(t) ~dotted line! for the regular
trajectory of Fig. 4.
7-7
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R. FRANZOSI AND V. PENNA PHYSICAL REVIEW E67, 046227 ~2003!
the only feature inherited by the vortex state.
SDW-like intial conditions. In this case the choicej25

20.002 andE.1.09 fixes the PS that is represented in F
7. The zoom of the section reveals regular trajectories inP
placed near SDW fixed points the latter being characteri
by j2505j1 , f15w, f25p2w, where we have set (w
can be chosen arbitrarily! w50.57p. Figure 8 describes the
PS of a chaotic orbit chosen among those of Fig. 7: The
points are distributed in two, well separated, basins in a q
evident way. The interpretation of such an effect is the f
lowing: after recalling that settingj2.0 implies thatn3
.1/2, one deduces that, concerning the points of the PS
values allowed forn1 are eithern1.1/2 or n1.0, which
involves eithern2.0 or n2.1/2, respectively.

One therefore recognizes the presence of anpopulation-
inversionphenomenon betweenn1 andn2. Interestingly, no
intermediate values seems to be permitted. The corresp
ing scenario is given, on a shorter time interval, in Fig
where the nonperiodic oscillations of populationsn1(t),
n2(t), and n3(t) are compared and a population-inversi

FIG. 6. Populationsn1 ~solid line!, n2 ~dashed line!, and n3

~dotted line! are plotted as a function of the time for the chao
trajectory shown in Fig. 4.

FIG. 7. Poincare´ section atE.1.09 andj2520.002 relative to
orbits close to a SDW fixed point.
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effect involving n1 , n2 gets going. The population oscilla
tions referred to a regular orbit of those contained in
zoom of Fig. 7 are shown in Fig. 10.

Dimerlike initial conditions. As proven in Secs. III and IV,
the fixed points of this case consist of two saddle points
a maximum. The conditionsj2520.295,E.0.73 andj25
20.005,E.0.91 firm the PS associated with the first sadd
~see Fig. 11! with coordinatesj152j250.295, f152f2
5p, and to the second saddle~see Fig. 15! with coordinates
j152j250.005, f152f25p, respectively. In both the
cases, the PSs exhibit both regular and chaotic trajecto
Concerning Fig. 11~first saddle point!, the coexistence of
such regimes is confirmed in Fig. 12, where the PS o
regular trajectory is compared with the PS of a chaotic o
~see also Figs. 13 and 14!. Figure 16 shows analogous qua
tities referred to the second saddle point. It is worth not
that in the latter case the neighborhood of the saddle poin
characterized IC issuing regular orbits, whereas the fi
saddle is surrounded by IC generating chaotic motions.

In Fig. 15, regular orbits reside either on the bottom or

FIG. 8. Representation of one of the chaotic trajectories c
tained in the Poincare´ section of Fig. 7.

FIG. 9. The figure plots the populationsn1(t) ~solid line!, n2(t)
~dashed line!, andn3(t) ~dotted line!, as a function of the time, for
the chaotic trajectory shown in Fig. 8.
7-8
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CHAOTIC BEHAVIOR, COLLECTIVE MODES, AND . . . PHYSICAL REVIEW E67, 046227 ~2003!
FIG. 11. Poincare´ section firmed by the conditionsj25
20.295 andE.0.73, close to a dimerlike~saddle! fixed point.

FIG. 12. This figure shows a regular trajectory and a chaotic
chosen among those of Fig. 11.

FIG. 10. Populations of the three condensates:n1 ~solid line!, n2

~dashed line!, andn3 ~dotted line! as a function of the time for a
regular trajectory of the zoom shown in Fig. 7.
04622
e

FIG. 13. Temporal behavior of the condensates’ populations
lated to the regular trajectory of Fig. 12. The solid, dashed,
dotted lines refer ton1(t), n2(t), andn3(t), respectively.

FIG. 14. Condensates’ populations, as a function of the tim
related to the chaotic trajectory of Fig. 12. The solid, dashed,
dotted lines refer ton1(t), n2(t), andn3(t), respectively.

FIG. 15. Poincare´ section firmed by the conditionsj25
20.005 andE.0.91, close to a saddle dimerlike fixed point.
7-9
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R. FRANZOSI AND V. PENNA PHYSICAL REVIEW E67, 046227 ~2003!
the top of the figure, but dynamics never connects the
orbits with the bottom ones. This feature is confirmed by
time behavior~see Fig. 17! of ni(t) related to the regula
trajectory of Fig. 16. In Fig. 17, the presence of the g
betweenn2(.0.5) andn1 ,n3 (.5) indicates a macroscopi
self-trapping effect. The latter differs from the dimerlike se
trapping reviewed in Sec. II A, wherez15z3→n15n3, in
that n1 ,n3 develop independentoscillations. The scenario
just described no longer holds for the chaotic orbits: Fig
18 shows anintermittenteffect of population inversion be
tween n1 and n2. This reflects the fact the points of th
chaotic orbit of Fig. 16 are distributed intermittently both
the higher and in the lower part of the PS.

The trajectories near the maximum~we consider the cas
j150.999,j250.998,f152f25p,! appear to be regular
as one can deduce from Fig. 19 that shows PS close
maximum fixed point withj250.8 andE.1.7. In this case,
populationsn1(t), n2(t), andn3(t) display in Fig. 20 a pe-
riodic effect of population-inversion involving n1 ,n2,
whereas the fact thatn1 ,n2 !n3 entails an evident self
trapping phenomenon.

FIG. 16. This figure shows a regular trajectory and a chaotic
chosen among those of Fig. 15.

FIG. 17. Temporal behavior of the condensates’ populations
lated to the regular trajectory of Fig. 16. The solid, dashed,
dotted lines tracen1(t), n2(t), andn3(t), respectively.
04622
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The averages of the MLEs calculated for the chaotic
bits are 0.74~Fig. 3!, 0.42 ~Fig. 7!, 0.29 ~Fig. 11!, and 0.96
~Fig. 15!. The evaluation of the MLE for the regular trajec
tories described in the previous examples~as well as for
those of Fig. 1 and Fig. 19! exhibit the expected decreasin
behavior thus suggesting that a weak stochastic feature
currs on such trajectories. It is worth mentioning that t
analysis of regular and chaotic motions in the Eqs.~2! could
be performed quantitatively within a recently proposed g
metrical framework to tackle Hamiltonian chaos@20,21#. In
particular, a system described by a Hamiltonian quartic in
momenta~which is thus of the same type of the trimerlik
one! would require the use of Finsler spaces@22#. Such an
interesting possibility is under active consideration.

VI. CONCLUSIONS

In this paper, we have focused our attention on the str
ture of the phase space of ‘‘classic’’ trimer, that is, the me

e

e-
d

FIG. 18. Condensates’ populations, as a function of the tim
related to the chaotic trajectory of Fig. 16. The solid, dashed,
dotted lines tracen1(t), n2(t), andn3(t) respectively.

FIG. 19. Poincare´ section near a maximum atE.1.7 andj2

.0.8. In the neighbourhood of the maxima the phase space tra
tories are regular.
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CHAOTIC BEHAVIOR, COLLECTIVE MODES, AND . . . PHYSICAL REVIEW E67, 046227 ~2003!
field form of the model describing three interacting BEC
Our analysis puts in light, on the one hand, the remarka
complexity that characterizes the trimer dynamics~by com-
parison with the integrable dynamics of the dimer syste!,
on the other hand, the phenomena that are expected to
acterize theM-well chain of interacting condensates. In vie
of the recent experimental results, the phenomenology of
system seems more and more viable to experimental ob
vations. Trimer dynamics has been investigated within
semiclassical Hamiltonian picture, reviewed in Sec. II a
developed in previous papers, based on a coherent-state
resentation of the trimer quantum state.

The identification of the set of fixed points of trime
Hamiltonian equations and the fact that such points are
sociated to periodic solutions~collective modes! of several
types represents the initial, central result of our paper.
presence of the constraintN5const entails that the states th
stationarize the Hamiltonian are not isolated points but p
odic orbits~one-dimensional manifolds!. The solutions thus
found enlarge the set of exact solutions@11,13# pertaining the
dimerlike integrable subregimes of trimer and exhibiting
parameter-dependent self-trapping effect.

Based on the second variation~with N5const) of the en-
ergy function around its fixed points, the character of
latter has been recognized in Sec. IV and Appendix
thereby revealing the presence of several saddle points
maxima, in addition to the expected ground state. Numer
simulations and the PS method have furnished a wide
nario of trimer dynamical behaviors whose possiblechaotic
character has been tested by measuring the maxim
Lyapunov exponent. We summarize the results of our
namical simulations.

~i! The orbits that have ICs close to ground-state exhib
regular behavior with periodic oscillations of populationsni .

~ii ! On the contrary, orbits with vortexlike IC~namely,
based at points close to vortex fixed points! are, in general,
chaotic. Regular orbits, however, are found at sufficient d
tance from vortex fixed points. For such orbits a stable g

FIG. 20. Time evolution of the condensates’ populations rela
to a motion with initial conditions close to a maximum state co
figuration. The figure showsn1(t) ~solid line!, n2(t) ~dashed line!,
andn3(t) ~dotted line!. The motion appears to be regular.
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separates the oscillations ofni from those ofnj , nk ( j ,k
Þ i ) thus generating self-trapping;nj , nk show independen
oscillations ~in Sec. VI configurations withi 52, j 51, k
53 has been considered!. The gap disappears for chaot
orbits.

~iii ! Orbits with SDW-like ICs also display both regula
and chaotic behaviors but their ICs are not separated
tially. The regular orbits we have considered keep
memory of the IC since one of the three wells remains
most empty~pure dimer! while the other two undergo regula
oscillations. Such states identify essentially withp-like
states and manifest a stable character. An example ofchaos
emergence, which starts with a macroscopic population i
version entailing the filling of the~initially ! depleted well,
has been detected by assuming various SDW-like ICs inv
ing chaotic orbits.

~iv! Regular orbits generated by dimerlike ICs~related to
the second saddle point! exhibit periodic oscillations ofni ’s
with an evident self-trapping. Chaotic orbits, instead, g
rise to oscillations displaying self-trapping on short-time
tervals and intermittent population-inversion effects. ICs
close to the maxima further generate regular orbits with s
trapping. The corresponding states display the presence
unique almost filled well@23#.

The scenario just depicted supplies a rich account of pr
erties, behaviors and possible observable effects issuing f
trimer dynamics and suggests promising future devel
ments.

We emphasize the fact thatt5T/NU is the parameter tha
actually characterizes the dynamical behavior and that
changes oft can be caused by varyingU, T, andN. While
the ground state, the vortex states, and the SDW states@see
Eqs.~4!, ~6!, and~8!, respectively# have been shown to bet
independent, dimerlike fixed points have revealed a comp
dependence ont. The interesting result of Sec. III D is tha
for t,t* one finds two distinct saddlesA1(q1), A2(q2) and
a maximumA3(p) @such configurations are defined explicit
via Eqs. ~10!–~13!, while the t-dependent parametersq1 ,
q2, and p were derived in Appendix B#, whereas, fort
.t* , only the A3(p) survives. This effect might have
macroscopic character since theA1-A2 coalescence fort
5t* is expected to cause chaos suppression~see Sec. III D!.

The basic configurations~ground state, vortex states
SDW states, and dimerlike states involving both saddle
maximum points! recognized in the present work, and th
complexity of dynamical regimes, both chaotic and regu
that develop in their neighborhoods deserve further inve
gations in two directions at least. First, classically, o
should carry out a systematic study~requiring huge compu-
tational resources! of long-time behavior of dynamical state
of interest to disclose further macroscopic effects. For
same reason, a larger number of ICs~together with the tra-
jectories thus issued! should be considered near fixed-poi
configurations.

We point out the fact that predictions on the dynamics
phases f i should be important in relation to phas
interference experiments@3#. This aspect, which has not bee
deepened in the present work, requires a separate ana
and further numerical study directed to detect phenom

d
-
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R. FRANZOSI AND V. PENNA PHYSICAL REVIEW E67, 046227 ~2003!
exhibiting phase coherence and their stability in proximity
states endowed with ordered phase configurations suc
vortex states (f i52pk/3, k51,2), SDW states (f i2f j
5p, iÞ j , uzku50 with i , j Þk), and dimer configurations
(f i5f j , zkÞzi5zj with i , j Þk).

Second, in view of the possibility of realizing system
with small per-well populations, the pure quantum approa
to trimer dynamics~along the same lines of previous wo
directed to study the spectral properties of dimer! seems to
be quite natural@32#. The study of quantum trimer might pu
in evidence unexpected effects caused by the competitio
chaotic~classical! behavior and integrable~quantum! behav-
ior on the borderline of appropriate mesoscopic regim
where the transition from quantum to classical dynam
takes place.
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APPENDIX A: DERIVATION OF FIXED POINTS

Equations~3! can be simplified by noting their invarianc
under the global symmetry transformationz,→z, exp(iF)
and the fact thatz, /ZPR ~wheneverZÞ0) with ,51,2,3.
Then one can setz,[x, exp(iF), where thex, are real num-
bers andF is an arbitrary phase, thus reducing Eqs.~3! to a
system of the three real equations

Ej~x!ªS 2Uxj
22m1

T

2D xj2
T
2

X[0, ~A1!

with j 51,2,3 andXªx11x21x3. When the conditionxi
Þ0 for i 51,2,3 is imposed, the latter equations can be rec
in terms of an equivalent system of three equations one
which fixes the Lagrange multiplierm, while the other two,
now formulated in am-independent form, determinex1 , x2 ,
x3 thanks to the further conditionN5const. In fact, the sum
of the quantitiesEj (x)/xj can be set equal to zero provide
xjÞ0 thus giving the equation

3m52UN2
T

2 (
i

X2xi

xi
. ~A2!

Moreover, from E1(x)/x12E2(x)/x250 and E3(x)/x3
2E2(x)/x250 one obtains

05~x22x1!F2U~x21x1!1
TX

2x1x2
G , ~A3!

05~x22x3!F2U~x21x3!1
TX

2x3x2
G , ~A4!

completed by the conditionN5x1
21x2

21x3
2.
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APPENDIX B: DERIVATION OF DIMERLIKE FIXED
POINTS

Because of the identificationx15x2 ~characterizing di-
merlike fixed points!, Eqs.~A3! and ~A4! become a unique
equation that can be written as

2U~x1
22x3

2!5
T

2 F11
x3

x1
22

x1

x3
G . ~B1!

Such an expression suggests two possible ways to pa
etrizex1 , x3 ,

x15ANRcosha, x35ANRsinha,
~B2!

x15ANRsinhb, x35ANRcoshb,

both allowing for the elimination ofN in the constraint 2x1
2

1x3
2[N. They also provide two independent class of so

tions that make explicit the three roots involved by the cu
character of Eq.~B1!. In the first case, one finds

R25
12q2

21q2
, R25

t

4 F11q2
2

qG ~B3!

@the first formula comes from the constraint on the total nu
ber of bosons, the second one comes from Eq.~B1!#,
whereas the second choice gives

R25
12p2

112p2
, R25

t

4 F2p212
1

pG , ~B4!

wheretªT/UN, q5tanha, p5tanhb, anda,bPR. Sys-
tem ~B3! reduces to the cubic equation

t~21q2!~21q!14q~11q!50, ~B5!

which, providedqP@21,11# in order to ensure the condi
tion R2>0, supplies either two or none solutions, depend
on the fact thatt,t* , t.t* . By solving the system one
finds that the two rootsqn(t), n51,2 range in@21,0# and
fulfil the conditions

21<q1<q2<0 for 0<t<t* ,

with q1(t)5q2(t) for t5t* . The parametert* is identified
by imposing, in addition to Eq.~B5!, the requirement that the
two q-dependent functions of Eqs.~B3! ~that is, the two
right-hand sides! be tangent at some point,

26q

~21q2!2
[

t

4 F11
2

q2G . ~B6!

Equations~B5! and ~B6!, solved numerically, supply the
valuet* .0.297 18.

Such a structure does not characterize system~B4!, which
always exhibits a single solution for some appropriate va
in the sectorpP@21/2,0# obtained from the equation
7-12
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t~112p2!~112p!14p~11p!50. ~B7!

In view of the restrictionq,p,0, from definitions~B2! one
deduces that the fixed-point coordinates are such thatx1x3
,0. The three solutionsq1(t), q2(t), p(t) just obtained
correspond, within the space of coordinates$(x1 ,x2 ,x3)%
[R3, to three vectors expressed as

A1ª„a1 ,a1 ,2~a1 /ua1u!AN22a1
2
…,

A2ª„a2 ,a2 ,2~a2 /ua2u!AN22a2
2
…, ~B8!

A3ª„a3 ,a3 ,2~a3 /ua3u!AN22a3
2
…,

where

a356F Np2

112p2G 1/2

, an56F N

21qn
2G 1/2

, ~B9!

with qn , p solving Eqs.~B5! and~B7!. One can easily check
that the twot-dependent curvesA1 and A2 can be seen a
two branches of a unique curve based at the common p
A1(q1)5A2(q2) for t5t* , where they join smoothly.

Dimerlike fixed points become nine when considering
further set of points generated by index permutations

B1ª„a1 ,2~a1 /ua1u!AN22a1
2,a1…,

B2ª„a2 ,2~a2 /ua2u!AN22a2
2,a2…, ~B10!

B3ª„a3 ,2~a3 /ua3u!AN22a3
2,a3…,

C1ª„2~a1 /ua1u!AN22a1
2,a1 ,a1…,

C2ª„2~a2 /ua2u!AN22a2
2,a2 ,a2…, ~B11!

C3ª„2~a3 /ua3uAN22a3
2,a3 ,a3…,

related to the subcasesx15 x3Þx2 andx35 x2Þ x1. Such
nine curves become actually six. Our previous observa
on consideringA1 andA2 as a unique curve, in fact, readil
extends the curvesB1 , B2, andC1 , C2. Due to the double
choice6 in Eq. ~11! such curves are 12.

In order to visualize the dimerlike fixed points, one c
plot their position vectorsA, , B, , C,, ,51,2,3 within the
three-dimensional space by varying their parametersa, (,
51,2,3) in the appropriate range. As noted above, in the c
t,t* , for q ranging in the interval@21,0#, Eq. ~B5! exhib-
its two solutions, whereas, for anyt, Eq. ~B7! admits one
solution with pP@21/2,0#. The corresponding ranges o
variation foran (n51,2) anda3 are

AN

3
<uanu<AN

2
, 0<ua3u<AN

6
,

respectively. The representation of the position of dimerl
fixed points on the sphere( ixi

25N provides arcs that neve
intersect the one with the other whent ranges in@0,̀ #. The
04622
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double sign6 in parametrizations~B9! entails that each
curvePj (P5A,B,C) is formed by two disjoint curves. Fo
P3 (P5A,B,C) one has

a3P@2AN/6,0@ , a3P#0,AN/6#,

while for P1 andP2 (P5A,B,C) the two disjoint branches
are originated by the mappingsan→Pn with

anP@2AN/2,2AN/3#, anP@AN/3,AN/2#.

APPENDIX C: DIAGONALIZATION OF M p

The diagonalization process ofM p allows one to prove
that one of the eigenvalues is always zero. From the stan
condition det(M p2l)50, one obtains the eigenvalue equ
tion ~upon introducingLª2l/T)

L31S (
j

d j DL21~d1d21d2d31d3d123!L1d1d2d312

2(
i

d i50, ~C1!

where d1d2d3122( jd j , upon settingd j[2(x,1xk)/xj
owing to Eqs.~A1!, can be shown to vanish in virtue of th
identity

)
j

*
~x,1xk!/xj521(

j

*
~x,1xk!/xj .

The superscript symbol * recalls that the indices,, k, and j
must differ the one from the other. Hence, as a general re
the diagonalization ofM p entails the presence of a zero e
genvalue consistent with the analysis of dynamics in the
duced phase space, developed in Sec. V. In view of
matrix-trace invariance, one also finds

(
j 51

3

l j52
T

2 (
j 51

3

d j→l11l2

[
T

2 (
j

x,1xk

xj
~[23m12UN!,

while the two roots

ln5
T

4
@2D6A~D!224~D12323!#, ~C2!

where,D5S id i andD123:5( id1d2d3 /d i , andn51,2, @l1
(l2) is joined to2 (1) in Eq. ~C2!#, issue from the qua-
dratic equation that emerges from Eq.~C1! when removing a
factor L.

APPENDIX D: FIXED POINT CHARACTER

This appendix is devoted to recognizing, case by case,
minima, the maxima, and the hyperbolic points within t
four ~class of! states identified as fixed points. Concerni
the eigenvalues of matrixMq one must take into account th
7-13
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restriction on the displacementsj i from v i induced by the
constraintN5( i uzi u25const. After recalling that the phas
of v i can be absorbed, for eachi, by j i due to its arbitrari-
ness, the substitutionv i→xi implies that

N5(
i

uj i1xi u25(
i

@ uj i u212qixi1xi
2#,

which, in turn, entails( i uj i u212qixi50, namely—to first
order—the plane equationq1x11q2x21q3x350. It repre-
sents the restriction on the displacements that variablesj i ’s
are allowed to effect. Substitutingqi with qi52(xrqr
1xsqs)/xi , where r ,sÞ i ~and the choice ofi depends, in
general, on the conditionxiÞ0) finally gives

h~q;6U,T,m![F2
xrxs

xi
2 ~6Uxi

22m!1
T~xr1xs2xi !

xi
Gqrqs

1(
j Þ i

F12Uxj
22

m

xi
2 ~xi

21xj
2!1T

xj

xi
Gqj

2 .

~D1!

1. Ground-state case

These fixed points are characterized by the fact thatxj5
6AN/3 for j 51,2,3, andm52UN/32T. By inserting this
solutions in Eq.~18! one obtains the Hamiltonian written a

H35Egs1(
j 51

3 F S 4

3
UN1TDqj

21Tpj
2G2

T

2

3 (
iÞ j 51

3

~pipj1qiqj !,

where Egs is the ground-state energy defined previous
Then, by taking the constraintN5( j 51

3 uzj u2 into account,
one obtains( j 51

3 @qj
21pj

262AN/3qj #50. For little dis-
placements fromqj505pj the latter equation reduces t
( j 51

3 qj50, which implies that

H3.Egs1S 8

3
UN13TD ~q1

21q2
21q1q2!

1T (
i 51

3

pi
22

T

2 (
iÞ j 51

3

pipj . ~D2!

The eigenvalues of the Hessian corresponding to
q-dependent and thep-dependent part ofH3 are $(3t
18/3)UN/2,(9t18)UN/2% and $0,3T/2,3T/2%, respec-
tively. They are positive, coherent with the fact this is
minimum.

2. Vortex case

The conditionsuxi u25N/3 andm5(4NU13T)/6 charac-
terize vortex configurations. One thus finds

h~p;2U,T,m!52T~p11p21p3!2/2,0,
04622
.

e

whereas from Eq.~D1! one gets

h~q;6U,T,m!58UN~q1
21q2

21q1q2!/3.0,

whose eigenvalues are always positive. Vortex configurati
are therefore saddle points.

3. SDW case

The previous analysis shows that the~fixed point! con-
figurations in which one of the three well is depleted~e.g.,
well i 52) is such thatx250, x152x356AN/2 (p-state
structure!, andm5NU1T/2. Site index permutations allow
one to obtain two further, similar cases. In these poin
Hamiltonian~18! can be written as

H35Edw1UN@2~q1
21q3

2!2q2
2#2

T

2 F S (
i 51

3

qi D 2

1S (
i 51

3

pi D 2G .

In this case, the constraint on the total number of partic
supplies the constraint( j 51

3 (pj
21qj

2)6A2N(q12q3)50,
which reduces toq12q3.0 whenqj ,pj.0. ThenH3 takes
the form

H3.Edw1UN~4q1
22q2

2!2UNp2
22

T

2
@~2q11q2!2

1~p11p21p3!2#, ~D3!

whose Hessian matrix is endowed with the eigenvalues$(6
25t6A5(20212t15t2))UN/4% and $0,2(213t
6A424t19t2)UN/4% for the q-dependent part and th
p-dependent part, respectively. The analysis of the signa
of such eigenvalues leads to identify the fixed points of
empty-well case with saddle points.

4. Dimerlike case

In the dimerlike case, the conditions on the coordina
are xªx15x2Þx35:y ~none vanishing!. Furthermore, one
has to impose the condition (2Uxj

22m)xj5T/2(kÞ j xk on
the Lagrange multiplierm that becomes

m5@2UN2T~11y/x1x/y!#/3. ~D4!

Let us start by analyzing the Hessian eigenvalues of Ham
tonian p sector, namely, of Eq.~20!. These eigenvalues ar
given by Eq.~C2! and one has that whenever the terms
ª(d1d21d2d31d3d123) is greater then zero, these eige
values are negative. To verify the conditions.0 one can
proceed in the following way. First, one substitutes ins the
d j written in term of their definitions; namely, in term ofm,
T, U and the fixed-points coordinatesx,y, Second, one
writes m in terms ofx, y and, etc.@Eq. ~D4!#. Finally, one
eliminates the dependence onx, y, andT in s by choosing
either the parametrization
7-14
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y/x5q, x56AN/~21q2!,

combined with Eq.~B5! to express theq dependence oft, or
the parametrization

x/y5p, x56ANp2/~112p2!,

combined with Eq.~B7! to express thep dependence oft.
The expression fors achieved in such a way depends onq or
p, respectively. One can show that both the expressions
always positive in the range of definition ofq (@21,0#) and
p (@21/2,0#), which means that eigenvalues~C2! are all
negative.

As usual, for working out the Hessian eigenvalues
Hamiltonian~19! related to theq part of the original one, it is
necessary to take into account the constraint( i uzi u25N
5const. The latter, in the present case, becomesq3[2(q1
1q2)x/y. By means of this condition, one can reduce t
dimension of the eigenvalues problem related to Eq.~19!
from 9 to 4. The Hamiltonianhr(q1 ,q2 ,U,m,T) thereby ob-
tained can be further simplified via the substitutionsm→m
5@2UN2T(11y/x12x/y)#/3 andy/x5q or x/y5p, de-
pending on the parametrization one adopts. With the fi
choice (y/x5q), and relying on Eq.~B5!, one finds two
Hessian eigenvalues one of which is always positive, wh
the other has an ill-defined sign in the domainqP@21,0#.
By using the second parametrizationx/y5p and Eq.~B7!,
both the eigenvalues thus obtained can be proven to be n
tive for pP@21/2,0#. In summary, in the dimerlike case, fo
0,t,t* , one has two saddle points and one maxim
point; for t* ,t, instead, fixed points reduce to a sing
maximum point.

APPENDIX E: REDUCED PHASE-SPACE DYNAMICS

The fixed-point configurations corresponding to t
change of Hamiltonian variableszi , zi* → ja fa , N, c are
obtained from the equations of motion rewritten in terms
the new variables~see below!. Coordinates transformatio
~23! can exhibit~isolated! singular points where they are no
04622
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invertible. Dimer configurations with an empty well provide
an explicit example where transformations~23! are ill de-
fined. In fact, fixed points

~zi !5„AN/2 expif,0,AN/2 expi ~f1p!…

correspond to the set$(0,0,x,p2x)u; x%, in the new de-
scription. As regards dynamical applications, fortunately, t
problem is bypassed because the trajectories chosen nea
periodic orbits associated to this kind of fixed points~as well
as the PS used to study the dynamics near the same
points! do not contain, by construction, such pathologic
points. Upon settingf12ªf11f2 , sªUNt, the motion
equations in thereducedphase space are given by

df1

ds
5122j11j21

t

2 FA 11j2

j12j2
cosf2

1
~122j11j2!cosf1

A~12j1!~j12j2!
2A11j2

12j1
cosf12G ,

~E1!

2
df2

ds
512j112j21

t

2 FA 12j1

j12j2
cosf1

1
~12j112j2!cosf2

A~j12j2!~11j2!
2A12j1

11j2
cosf12G ,

~E2!

dj1

ds
5tA~12j1!~j12j2!sinf1

1tA~12j1!~11j2!sinf12, ~E3!

dj2

ds
5tA~j12j2!~11j2!sinf2

1tA~12j1!~11j2!sinf12. ~E4!
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