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The dynamics of the three coupled bosonic wettimer) containingN bosons is investigated within a
standard(mean-field semiclassical picture based on the coherent-state method. Various periodic solutions
(configured asm-like, dimerlike, and vortex statgsepresenting collective modes are obtained analytically
when the fixed points of trimer dynamics are identified on Mweconst submanifold in the phase space.
Hyperbolic, maximum and minimum points are recognized in the fixed-point set by studying the Hessian
signature of the trimer Hamiltonian. The system dynamics in the neighborhood of periodic(adsitsiated
with fixed pointg is studied via numeric integration of trimer motion equations, thus revealing a diffused
chaotic behavionot excluding the presence of regular orhit®iacroscopic effects of population inversion,
and self-trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic
orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the presence of
chaos.
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I. INTRODUCTION prompt the theoretic study of the three-well systérimer)
that is the central topic of this paper. In particular, the study
Remarkable progress in experimental design has bee®f trimer offers the possibility to investigate regimes of spe-
made since the first direct observation of Bose-Einstein congi@l interest, where the competition of theurely quantum
densation in dilute atomic g&&]. One of the most promising integrable evolution with thegclassical chaotic behavior

developments concerns the construction of experimental dégkes place, in the limit of large number of atoms.

ices in which condensates. achieved within complex aeom- The connection between the quantum and the semiclassi-
vi in-whi ' plexg cal picture of many interacting bosonic wells has been illus-

, - rated in Ref[10] and, in view of the closed link between an
that are observable at the macroscopic Ig2et4]. In this array of interacting BECs and the Bose-Hubbé#) model
respect, one should recall, for example, teaperfluid bo-  [10,15, in Ref.[16] within the BH model theory. We wish to
son Josephson-junction arrays obtained by means of opticabserve that the semiclassical approdchrresponding to
lattices that trap weak interacting Bose-Einstein condensatetescribing condensates within the Bogoliubov approxima-
(BEC39 in periodic arrays of potential wellg]. In parallel  tion) is appropriate for interacting wells with macroscopic
with the experimental work, increasing attention has beeroson populations. However, the systems recently obtained
devoted theoretically to studying the dynamical behavior ofiwhere mesoscopic numbers of bosons per wellshave
low-energy statef6] in arrays of Bose-Einstein condensatesbeen achieved in condensates distributed among many)wells
where the number of lattice sitésamely, the potential wells might be best modeled by using the space-mode approxima-
occupied by the condensatis very large[7,8]. tion [9,17] stemmed from the second-quantized boson-field
Opposite situations, corresponding to “lattices” formed theory.
by two or three interacting wells, have been investigated as Compared with the dimer nonlinear behavior, indeed the
well in various recent papersee Refs[9—-14]). In particu-  system of three interacting bosonic wells exhibits an unex-
lar, the two-well system(dimen has been analyzed thor- pectedly rich phenomenology and provides an interesting re-
oughly from both the semiclassicéimean-field and the search topic, both theoretically and experimentally. In fact,
purely quantum viewpoint in Refd.10,14], respectively. despite the simplicity of the model, the trimer dynamics is
Such investigations have revealed how the nontrivial strucaffected by a strong inner instability leading to the chaos
ture of dimer phase space causes many significant phenoronset. This feature originates from the combination of the
ena such as the symmetry-breaking efféssuing oscillation model nonlinear character with the nonintegrable nature that
modes that are isoenergetic but nonequivalehe onset of  distinguishes trimer dynamics within extended regions of its
m-phase oscillations, theelf-trappingof boson populations, phase space. In respect of this, the solutions of the trimer
and, quantum mechanically, the occurrence(mdrameter- dynamical equationgdisplaying nonlinear periodic oscilla-
dependent, nondegeneratibublets in the energy spectrum tions (dimerlike orbits with possible self-trapping effeft
entailing periodic self-trapping. recognized in Refd.11,13 must be viewed as special sub-
The addition of a third well to the dimer system suggestsegimes in which dynamics is integrable. Concerning the in-
that an even richer dynamics should be observed: The resulétability of trimer dynamics, we wish to recall that the pres-
ing system, in fact, is no longer integrable. This fact and theence of homoclinic chaos has been revealed for the
forthcoming realization of such systefdue to the great ex- asymmetric trimer in Ref.18]. Also, the trap anisotropy of a
perimental progress in the confinement technigjiedeed condensate, which induces space separation, has been seen as
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an instability source in Ref{19]. An alternative study of Il. TRIMER DYNAMICS
such instability is in progress, based on the geometrical ap-

proa_ch rgcently. proposed N R_ei[éZO,Z]]. Such approach interacting bosonic wells can be derived from the quantum
consists in tackling the Hamiltonian chaos relying on the facrfield theory for boson fluidgwith a nonlocaly? term) by
that the geometry involved by the trimer Hamiltonian is thatimplementing theM-(spacemode approximatiofil5]. If the

of the Finsler space22]. At the quantum level, the survival hosan fiuid is a diluite gas dfl interacting bosons trapped in
of trimer breather configurations has been investigated iRy external potentiaf,, then its dynamics is generated by the

Ref. [23], while trimerlike systemdor systems involving |gcal boson-field Hamiltoniafl7,28,27
more complex bosonic latticebiave been studied recently

[24,25 within the quantum-computation physics.

In the present paper, we perform a systematic analysis of ﬂ:f dr ,}T(r)
the trimer dynamics directed to ascertain that the abscence of
integrability generates chaos and that this dominates the in-
teractions of three BECs modeled in a standard semiclassicalhere m is the boson mass),=4=#2a/m takes into ac-
picture. A rich scenario of dynamical behaviors emergesount the two-body interaction strength, amis the s-wave

from our analysis, which confirms the extremely structuredscattering length. The fielg(r) [ (r)] is the Heisenberg
character of trimer dynamics and represents the natural progeld operator that destruc{greates bosons at position.
ecution of the work of Ref{13], in which we focused our The nonlinear term has been written in the usual normal
attention on the special dimerlikéntegrable regime of tri-  ordered form. In order to work out the trimer Hamiltonian,
mer and on the self-trapping effect. _we state some assumptions: Firdf, is a three-well
Moreover, our analysis furnishes a complete scenario ofymmetric-shaped potential. Second, the lowest-energy level
the trimer dynamical regimes and of their dependence on thgf each well(within the approximation of/, in terms of a
external parameters occurring in the Hamiltonfaotice that  single-well parabolic potentinmust be well separated from
the control on the parameters’ dependence is expected to ge higher-energy leve[d7]. Third, the binary particle inter-
operationally useful in relation to experimentl appears as  actions is not strong enough to significatively change the
well to be topical in relation to the study of the dynamics of |atter assumptions.
solitons[8] and of vorticed26] on one-dimensional chains  gome further approximations are necessary to make ex-
of BECs as well as of experimental architectures obtalne%IiCit the ground-state structure f. Letr; (i=1,2,3) be the

recently[4]. The observation of such chain excitations, 'nIPcations of the minima o¥, and letV,=V(r—r,) be the

fact, must take into account the possible destructive action o arabolic approximation to the potential in tft@ minimum
inner instabilities whose influence is clearly manifested in? pp P '

so thatVe(r)=V(r—r;) whenr=r;. Also, let us introduce

the trimer chain. We emphasize the fact that the trimer Chai'?he cigenstates: that represent the normalized sinale-boson
is the simplest possible situation in which interacting BECs 9 1 P sing :
round states with enerdy, of the local parabolic potential

turns out to be governed by nonintegrable equations. Th¢, These states are onlv aporoximatively orthogonal be-
dimer dynamics, in fact, is completely integrable. I y approximatively 9

The paper layout is the following. In Sec. II, we review cause offd°ru;u,= &+ Ry but the residuy is a quan-
the derivation of the space-mode Hamiltonian for threefity exponentially suppressed depending on the overlap be-
coupled wells from the quantum field theory of bosonic flu-tweenu; anduy .. The analysis is restricted to those potentials
ids in the dilute-gas approximation, and present the semiclagor which R; <1 thus making negligible such contributions.
sical picture that describes coupled boson wells with macro- The picture of the system thus resulting suggests that
scopic populations. In Sec. Ill, we identify the set of fixedthe boson field operator can be expanded #@,t)
points of the trimer Hamiltonian equations and show how=,u;(r)a;(t), wherea;(t) [a/(t)] is the annihilation(cre-
such points are associated to periodic solutiapresenting  atjon) boson operatofassociated to the space-mode staje
collective mode)sowmg to the dynamically conser:ved total that satisfy the commutation relatiéa; (t),a}(t)]= 6 . By
boson numbeN. Section 1V is devoted to study the second substituting this expression in the many-body hamiltonian

e s 1y ot 0 1k Bt s o1 €A1 G, e owestorder n e overap beveer
9 P the single-well modes, the quantum trimer Hamiltonian

ture. In Sec. V, we perform a dimensional reduction of trimer, 101
1 - H H N 1 ]J

dynamics by defining a new set of canonical varlablesI

whereby the constant of motid is incorporated in the dy- -

namical equations. This paves the way to the implementation H.— U T T
R . . = ni—1)—vini—= a/a+aja),

of the Poincaresections’ method. The chaos onset in the 3 Z Ui=1)—vn ZGE,D( 1813

trimer dynamics is investigated in Sec. VI. First, in a quali-

tative way, by constructing the Poincasections for trajec-

tories whose initial conditions are chosen in proximity of the

fixed-point configurations identified in Sec. Ill. Then, quan-

titatively, by measuring the maximum Lyapunov exponent of U

such trajectories. Section VII contains concluding remarks TZZJ dsrij[vj—ve]ujﬂ, U:_Of dr|u;|,

and comments on future work. 2

The model for a chaifor more complex structurgsf M

22

% Uoat ~  |a
Ve et (D) | ),

where the site indek,j=1,2,3,v=—E,, and the operators
nita?ai count the number of bosons at sitAlso, in Hg
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represent théinterwell) hopping amplitude and the strength (z)= (#:,72,73) that satisfies Eqs(3), provides, at the

of the Coulomb on-site repulsion, respectivgdy17]. same time, a dynamically active solution of E¢®) repre-
The quantum dynamics involved by Hamiltonitiy can  sented byz;(t) = »; exdixt/#]. Despite its time dependence,

be cast in a classical form by representing the system quasuch aperiodic orbit represents gone-dimensional ex-

tum state through a trial stat&) written in terms of Glaub- tremal configuration oft{; on the hypersurfacél=const.

er's stategz) (defined bya;|z;)=z]z)). By implementing The solutions of Eqs(3) can be grouped in various classes

the time-dependent variational principl@DVP) and the the first of which is represented by the case

procedure discussed in Refs6,29 on |Z)=1I;|z), one

obtains the effective Hamiltonigi0] Z=; 2=0.

H3(Z,2*):=(Z|H3|Z)
T The remaining cases are obtained from H@®) and (A4),
Ez 13:1 U|zj|4—v|zj|2——(Z}*zj+1+c.c.) where z; can be replaced with_ the real quantities (see
2 Appendix A). Such cases are given by

(1) X1:X2:X3¢O,

j=1=4 on the trimer chainwith th ion
(j on the trimer chainwith the equations Xi= — Xp % Xg=0,

. T
iﬁ21=(2U|Zl|2_v)Zl_§(Zz+23), X1:X27&X3¢0.
Such configurations are discussed be[@8].
. T
. _ 2 T
iz, (2U|22| v)Z, 2 (z3+24), @ A. Ground-state configurations

- When x;=X,=X3, EQs. (A3) and (A4) are satisfied.
ih123=(2U]|23%~v) 23— = (21+2,). Based on Eq(A2) combined with the conserved quantity
° ° P2 one finds thak;= * \N/3 which provides

Such equations forz; (notice thatzj=(Z|a;|Z) and z z="NBexpgi®) (i=1,2,3, (4)
=(Z|a|Z)) can be calculated front{; via the Poisson _ _
brackets{z} ,zj}=i8;/% furished by the TDVP method. and 3u=2UN-—3T. The energy of such configurations
Those forz} are easily obtained by complex conjugation. (they are shown to represent the ground state in Secisll|
Various aspects concerning the special dimerlike subregim@Ven by
of Egs. (2), in which trimer dynamics is integrable, have

been studied in Ref$11,13. EgS:%UNZ—TN. (5

IIll. FIXED POINTS AND PERIODIC ORBITS The ground-state phase is arbitrary since it represents a

The distinctive features that characterize the dynamics ofymMmetry of the model. Also, the fact that=|z;|exp( )
a given Hamiltonian system can be recognized by exploring'@ve the same phage= reproduces the symmetry break-
the structure of its phase space. The first step to dd &3 N9 phenqmenon that d|st'|ng'U|shes the minimum energy state
is to locate the fixed points and to find their dependence o@nd. particularly, the vanishing of the phase differetue-
the model parameteld, T. The fixed points are derived in tWeen closed poinjsn superfluid media. Such two features,
the present section based on E(®, whereas the nature of which are known to characterize the superfluid ground state
such points is studied in the following section. of BH lattice model, naturally extend to the trimer model of
The fixed-point equations for the trimer are obtained bycondensates in our semiclassical picture. As regards(E);]s.
settingz;=0 in Egs.(2). Since the trimer dynamics is con- they are solved by;(t) = VN/3 exi(+xt/h)], with x=pu
strained by the constant of motid=|z,|2+|z,|2+]zs/2, —v, that describes the ground-state collective mode.
one must incorporate explicitly the restriction to the phase- ) ] _
space submanifold defined = const through a Lagrange B. Vortexlike configurations
multiplier . This just requires that one considers the varia- ~ The situation in whictz=0 leads to a special configura-
tions of H3— xN in place of that ofH3. The resulting equa- tion. In this case Egs(3) reduce to 6=(2U|z|*—u
tions are +T/2)z; implying, in turn, that

2u—T ) ANU+3T

O: = —
4U ) V]y M 6 1

T T
2U|z|°- pt 52— 52, (3) |2,]?=

wherej=1,2,3, andZ:=z,+2z,+23, u:=x+v have been where the value of is derived froms;|z|>=N. As a con-
introduced. Therefore, any fixed point, namely, any vectorsequence of the independencelqﬂ on the site index, the
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condition Z=0 is realized only if the phases of;
=|zj|exp(¢)) are such that;(k)=27jk/3+d,, wherek

=1,2, and®d is an arbitrary phase. This configuration rep-
resents a particular case of the vortex state discussed for the

Bose-Hubbard model on K-well chain lattice M>2) in

Refs.[26] and[10]. The energy associated with the vortex

states,
zj(k) = JN/3 exi 6;(k)], (6)
is given by
E_UN2 TNeod 2k _UN? TN .
=g TINeoy K= O

while dynamics issued from E@2) is described by the so-
lution z;(t) = z;(k) exdit(u—v)/%].

C. Configurations with a single depleted well

PHYSICAL REVIEW E67, 046227 (2003

a sphere due to the constraiNt= Eixiz. Their expressions
read

A1==(a1,a1,—(a1/|a1|) \/N_Zai),

Aoi=(a2,82,~ (az/|ag]) N —223), (10
A3::(a3,a3,—(a3/|a3|)M),
where
Np? 12 NIREL
az==* 1+ 2p? a, == 2 , (17

andv=1,2. Parameteng, andp are defined as implict func-
tions of parameter through system&B3) and(B4), respec-
tively. In particular, the cubic equation

7(2+0%)(2+0q)+4q(1+0q)=0, (12)

These configurations are characterized by the presence of

a single depleted we(SDW). Without losing generality, one
can choose the second well, so that one xg%;#0 and
X,=0. This case can be faced based on EA4): to satisfy
E,(x)=0 one must imposg;= — X4, which entails, in turn,

derived from Eq(B3), with g e[ —1,0] furnishes ther func-
tions g,(7), g,(7) corresponding to the real roots of Eq.
(12. Notice that —1=qi(7)<gy(7)<0 for 7<7*,
whereas, forr>7*, there are no solutions. The valug,

that the equatiorE;(x)=0 is equivalent to the equation Whereq;(7*)=0,(7*) (and A;=A,), is calculated in Ap-

E;(x)=0. The latter, together with the constraihlt=xi
+x3, implies thatx;=+ \/N/2=—x5, x,=0, which pro-
vides the fixed points

z,=N/2e'®, 2,=0, z3=N/2e'(®+™) (tS)
with u=2Ux3+T/2. Their energy is
1 5 1
Epw=75 UNZ+ 3TN, 9)

Permutations of site indicgsof z; furnish other five fixed
points of the same type. In view of sta(8), it is worth

noting that SDW configurations have the same structure o

the 7 statesoccurring in the dimer dynamid4.0], where the
phases of each well keep a constant phase differerioghe
course of time evolution. Solutiong;(t) =z (0)exgdit(u
—v)/h]—with z,(0) given by Eqs(8)—exhibit this property.

D. Dimerlike configurations

For such states the variables(recall thatxj2 is the boson
number of thejth well) satisfy the conditionx; =Xx;# Xy .

pendix B. Instead, systeitB4), with pe[ —1/2,0], always
exhibits a single solutiop(7) that is carried out from the
equation
(14 2p?)(1+2p) +4p(1+p)=0. (13)

The dependence on physical parameterd, N of A;(q,),
As(q,), Az(p) by means of parameteris thus established.

PointsA; found in this way generate, by varying three
curves on the sphere witli= const[in view of the sign= in
Egs.(11) they actually are sik These become 18 when con-
sidering the fixed points generated by index permutations.
This process is described in Appendix B, where the actual
Eumber of dimerlike fixed points is shown to reduce to 12.
uch curvegparametrized by via p(7) andq,(7)] can be
proven to never intersect with one another except for the
special case=7*, whereA;=A,. This coalescenceffect
is discussed below.

If the values ofg, andp for some giverr< 7* are carried
out explicitly, the energy foA;,

Eq=U[N?+6a’—4Na’]—T[a’— 2a;\N—2a’] (14)

Three cases are thus obtained through index permutation. (h=1,2,3), is obtained via formulad1).
general, since three fixed points turn out to be associated We conclude illustrating the physical situations that cor-

with each dimerlike configuratiofinamely, to each choice

respond to configuration&;, A,, andA; when r changes.

X;=X;#X), nine fixed points are finally found in the dimer- Also, we compare them to theure-dimerscenarid 10]. Let

like class.

us start with7—0. One hasq;=—1 andq,=p=0 that

To deal with an explicit case, we shall consider the fixedentail

points of the casg; =Xx,+# X3. Owing to its complexity, their

Ay(—1):==(NI3,\N/3,— N/3),

derivation is described in Appendix B. Here, we discuss the
results obtained. Fixed points depend on the parameter
:=T/NU and are representable as points,&,,x3) € R on

A5(0):=(\/N/2,\N/2,0),

(15
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3

A3(0):=(0,0\N),
i Ho=Ha(0)+ 3, (2U]v;[2—n=T)|[?

respectively. By increasing, A;(q,) andA,(qg,) get closer

anq cIoserAlez_ for r—1,). V_Vhenr> Ty o_nIy t_he fixed + 2 U(vf§j+vj§}‘)2+ I 2 l&— &2 A7)

point As(p) survives. In particular,7—o implies p= =1 4 Fk

—1/2, so that[from the third equation of Eq9.10)] one

obtains which undergoes the further simplificatiop=v;* —x; when
one recalls that the phase factorigfe C is a constant that
can be absorbed b . This fact allows us to separaté; in

1 :
As( - 5) =+ (\/N/6,\/N/6,— \/2N/3). (16) & o-dependent part and p-dependent part, withtj:=q;
+ip; . By making explicit the latter definition i3, we find

Since A;(p) [as well asB;(p), Cs(p), obtained via index Hs=Hoh(Q;6U,T, 1) +h(p;2U,T, ), (18)

permutation(see Appendix B] is shown to be a maximum in
Sec. 1V, indeedA3(p) appears to be comparable with the
7-dependent maximum of thépure dimer model[10],
where a unique well ends up being filled when-0. In- h(q;6U,T,u):=_>, (Mg)i;ai0; . (19
stead, wherr is increased, no merging @;(p) with other i

maximale.g.,B;(p), Cs(p)] happens as that observed in the

(pure dimer model. In this model, in fact, @nacroscopig

coalescence effect takes platgee, Ref.[10]) since two h(p;2U,T,,u)=:; (Mp)ijpip; - (20
maxima merge in a unique one whet-1 [the opposite
effect (bifurcation occurs forr<<1]. As shown in Appendix
A, such effects involving maxima pairs do not distinguish

whereHq:=H(v), and

Dynamical matricesvl; andM, are defined as

trimer dynamics. A, 101
A different macroscopic effect happens, however, in the T
trimer phase space. This is caused by the merging of distinct Mg=—> 1 A, 1 , (21)
saddle pointge.g.,A;, A,) discussed above, that disappear 2 1 1 A,
for 7> 7*. Since chaotic behavior develops around saddle
points, their coalescence should entail an evident local regu-
larization of dynamical behavior. 60 1 1
As a final remark, we wish to observe that state Tl 1 5 1
A;(—1) exhibits the same per-well boson distribution of the Mp=— 2 § ' (22)
ground state. Such two states differ uniquely owing to the 1 1 4

phase of the third well. Similarly, state;(0) and ther-like
state (YN/2,—+N/2,0) just differ owing to the opposite with A, -2(,u—6ij2)/T and 5, ==2(,u—2Ux12)/T. Hence,

phase of thehsecond well. I”Des;;lte their |d$fnt|cal bozon dISt'he d|agonalization of thélocal) quadratic form associated
tﬂbutlonfsuc S|Luat|0nfs Wld e)i‘l ibit ver3; dr; erent beII a\r/]IO to H, can be performed in a separate way in E4$) and
thus confirming the profound influence of the interwell phase (20). Further simplifications come from the fact that matrix
differences in distinguishing dynamical states. M, is proven to always have a vanishing eigenvalsee
Appendix Q, while, due to the conserved quantity
=3,|z]|?=const, the induced local constraigtx; + q,X
+03X3=0 makesh(q;2U,T,u) dependent only on two
In this section, we consider the stability character of fixedvariablesq; (see Appendix D
points just identified. Such a character is recognized by The stability character for ground states, vortex states,
studying the second variation of the energy function on theSDW states, and dimerlike states is studied explicitly in Ap-
hypersurface defined bi=const. Explicitly, one should pendix D. The calculation of thé{; second variation and,
analyze the signature of the quadratic form associated to thehen this is necessary, of Hessian eigenvalues provide the
Hessian ofH3z (with N=const) in each fixed point. Being following scenario.
this process rather technical, we mainly develop it in Appen- (i) States withx;=Xx,= X5 are energy minima.

IV. CHARACTER OF FIXED POINTS

dix D. Below, after showing how the separation?®f in two (ii) Vortex configurations are saddle points.
independent(local) subhamiltonians simplifies remarkably  (iii) SDW configurations are saddle points.
the stability analysis, we summarize the results obtained. (iv) Dimerlike states exhibit two saddle points and one

To simplify H3, it is advantageous to introduce the local maximum point for G<7<<7*.
variables¢;=z;—v;, wherev; are the coordinates of some In the last case the merging of the two saddle points to
given fixed point. Then, neglecting third and fourth orderform a regular point is enacted far—7*. Thus, for 7*
terms, H3 takes the form <7, a single maximum survives.
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V. MAPPING OF DYNAMICS ON 0.5 T T T T T T T T T
THE REDUCED PHASE SPACE

We develop a both qualitative and quantitative analysis of
the chaotic behavior of the trimer based on the Poinsate
tion method. After performing a qualitative study of the [
periodic-orbit instability, we effect a quantitative analysis by
measuring the very chaos’ indicator, namely, the Lyapunov=70.3s
exponent of every single orbit chosen near a period one. Ta
this end, we introduce a more suitable coordinate system o3
involving a symplectic reduction of dynamics. L

Hamiltonian (1) depends on three complex degrees of L
freedom and commutes with the boson numibef his fact
as well as the structure of coupling term7y permit us to , , , )
reduce from six to four the number @feal) canonical coor- 04 -02 0 02 04
dinates. The numerical integration of E¢®), thus, furnishes 2
a system picture consisting of a trajectory in a four-
dimensional4D) reducedphase-spac®e 3. In P, a Poin-
caresection(PS is the figure made by the points where a
trajectory cut a 2D reference plane. The new set of canonical ) ) i
coordinates used to construct the PS embodies explicitly th@hereé,=1—2a3(7)/N anda,(7) is defined by Eqs(11),
conserved quantitE?_,|z|2=N. Complex coordinates; whereas SDW states can be expressed as¢(Gr0; ¢) for

FIG. 1. Poincaresection att=0.47 andé,= — 1/3. In the neigh-
borhood of the ground state, the phase-space trajectories are regular.

= . n2: 0 .
Vi expg6) are replaced by Operationally, the motion equatiori®) are numerically
b1=0,— 0, &=(n,+ns—ny)IN, integrated by using a first-order bilateral symplectic scheme;
the algorithm precision is checked by monitoring the con-
bo=0s—0,, &=(Nz—n;—ny)IN, 23) served quantities, that is, the system energy and total number

of bosons. Trajectories can be traced in the phase space

terms of §;, &, ¢4, and ¢,. For any given value of the

reduced energy, Hamiltonia25) defines a 3D hypersurface

in P. The 2D surface used to construct a PS then is obtained

by firming the value o, to a constant. Hence, PS is made

{¢.&}=—268;IN, {¢ ,N}=0, py coordinates ¢, ¢,) of the points’ set in which trajecto-
(24) ries cut the selected 2D surface.

lﬁ:(03+ 01)/2, N:n1+n2+n3,

which obey the canonical Poisson brackets

{.€3=0, {¢N}=—-1.

Discussion of numerical results

With such new variableg31] 3 becomes We present the results of the numerical analysis aimed at

investigating the phenomenology of the trimer dynamics in
_ 2 proximity of fixed points—these identify with the periodic

£ H(é1 60, b1, d2)=Eo+ E+E— 16— &1+ &,

 UNZ orbits that stationarizé{; with N=const—calculated in Sec.
lll. The Hamiltonian parameters chosen for the numerical
N ATy )f cos¢,  COS¢, simulations are
-7 — 61617862 2
V(1+&) V(1-é) r=TINU=0.1, v=0. (26)
+L¢lzl, (25)  Simulations have been carried out by using an integration
V(é1—&2) time step of order X 10”4, while the total number of time

steps employed in constructing each orbit is of ord&r Eor
in which ¢1:=¢1+ ¢y, E=1—-2u/(UN) (the associated each periodic orbit a PS has been selected by setfing
Hamiltonian equations are contained in Appendix =const, d&,/dt>0 and the reduced energy=2E/UN?
terms of coordinateséf,&,,¢1,¢2) the ground-state con- =const; on this section we have considered samples of about
figuration (4) and vortexlike fixed point$6) correspond to 100 initial conditions(IC). Also, the maximum Lyapunov
exponent(MLE) has been measured for each trajectory of
(3,-%,00), (%, -%27kénk) the samples associated to the extremal periodic orbits.
Ground stateThe PS of this case is fixed by the condition
(k=1,2), respectively. Dimerlike fixed poinfsonsider, e.g., §>=—1/3. About 100 initial conditions have been chosen in

A, in Eq. (10)] are given by the &;— ¢, plane, placed close to the point{y( ¢;)
=(1/3,0). The energy of the corresponding trajectories is
(€1,26,—1,0/m), =0.47. Figure 1 shows that all the trajectories are regular in
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FIG. 2. Typical time evolution of the condensates’ populations

FIG. 4. Representation of a regular orfientified by the al-

related to a motion with initial conditions close to a ground-statemost continuous lineand of a chaotic one chosen among those of

configuration. The solid, dashed, and dotted lines refen,{a),

the PS of Fig. 3.

n,(t), andns(t), respectively. The dynamics appears to be periodic

(within the simulation time scale

consistent with the periodic character shown by the oscilla-

point is basically surrounded by chaotic orbits. In Fig. 3, to
reach the nearest regular orbits starting fréps1/3, 1=
the phase spac®. Their regular character appears to be —27/3, a finite variation of bott€; and ¢, is necessary.

When this change is carried out the trimer-population os-

tions of populations; =|z|? (see Fig. 2of each condensate. Ccillations change in a significant way. The time evolution of

Vortexlike initial conditions The choiceé,=—0.3, &

condensate populations (i=1,2,3) related to the noncha-

=0.77 distinguishes the PS of the present case. The initigdtic orbit of Fig. 4 is illustrated in Fig. 5 and confirms its
conditions for the trajectories have been chosen close to thi@gular character. By considering IC closer and closer to the

fixed points €;,¢1)= (1/3,2kw/3), k=1,2 (vortex state
Since no difference distinguishes the PS wkth1 and that
with k=2, we restrict our attention tk=1. Figure 3 shows
the presence of both regular and chaotic trajectdiffég. 4
supplies two examples, one for each orbit fiygeshows as

vortex-state position such a character is progressively lost.
This is shown in Fig. 6 that plots populations, as a func-
tion of time, for the chaotic trajectory of Fig. 4.

The regular orbit of Fig. 4 involves an evideself-
trapping effect provided their IC are enough far from

well that the PS points related to chaotic trajectories are dist€1,¢1)=(1/3,—27/3). This is clearly manifested in Fig. 5
tributed in a region well separated from that occupied bywhere n;(t)’s oscillate in such a way tha,(t)<ny(s),
points generating regular orbits. In particular, the PS dishs(s), V t, V s: astable gapin fact, separates, from n,,
played in Fig. 3[together with other PS involving slightly nsz. On the contrary, no stable gap is involved, in general, by
different £, (=—1/3)] suggests that the vortex-state fixed chaotic orbits(see Fig. 6 that develop large oscillations on
the whole range of;. The fact that, in average,;=1/3 is

08

0.6 —
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FIG. 3. Poincaresection até=0.77 and&,=—0.3 for orbits

close to a vortexlike fixed point. Even if some regular orbits are

FIG. 5. Time evolution of condensate populatiangt) (solid

present, phase-space trajectories show a dominating chaotic chardicie), n,(t) (dashed ling and ns(t) (dotted ling for the regular

ter.

trajectory of Fig. 4.
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FIG. 6. Populationsn, (solid line), n, (dashed ling and n; FIG. 8. Representation of one of the chaotic trajectories con-

(dotted ling are plotted as a function of the time for the chaotic tained in the Poincarsection of Fig. 7.
trajectory shown in Fig. 4.

effect involvingn,, n, gets going. The population oscilla-
the only feature inherited by the vortex state. tions referred to a regular orbit of those contained in the
SDW-like intial conditionsIn this case the choicé,= zoom of Fig. 7 are shown in Fig. 10.
—0.002 and€=1.09 fixes the PS that is represented in Fig. Dimerlike initial conditions As proven in Secs. Il and 1V,
7. The zoom of the section reveals regular trajectorie® in the fixed points of this case consist of two saddle points and
placed near SDW fixed points the latter being characterized maximum. The condition§,= —0.295, £=0.73 andé,=
by £&,=0=¢,, d1=¢, ¢o=m— ¢, where we have setg{ —0.005,=0.91 firm the PS associated with the first saddle
can be chosen arbitrarjlyp=0.577. Figure 8 describes the (see Fig. 11 with coordinatesé; = —&,=0.295, ¢;=— ¢,
PS of a chaotic orbit chosen among those of Fig. 7: The PS-7, and to the second saddlisee Fig. 15with coordinates
points are distributed in two, well separated, basins in a quit¢, = — £,=0.005, ¢,=— ¢,=r, respectively. In both the
evident way. The interpretation of such an effect is the fol-cases, the PSs exhibit both regular and chaotic trajectories.
lowing: after recalling that setting,=0 implies thatn;  Concerning Fig. 11(first saddle point the coexistence of
=1/2, one deduces that, concerning the points of the PS, theich regimes is confirmed in Fig. 12, where the PS of a
values allowed fom, are eithern;=1/2 or n;=0, which  regular trajectory is compared with the PS of a chaotic one
involves eithem,=0 or n,=1/2, respectively. (see also Figs. 13 and 14~igure 16 shows analogous quan-
One therefore recognizes the presence opapulation- tities referred to the second saddle point. It is worth noting
inversionphenomenon betweam andn,. Interestingly, no that in the latter case the neighborhood of the saddle point is
intermediate values seems to be permitted. The correspondharacterized IC issuing regular orbits, whereas the first
ing scenario is given, on a shorter time interval, in Fig. 9saddle is surrounded by IC generating chaotic motions.

where the nonperiodic oscillations of populationg(t), In Fig. 15, regular orbits reside either on the bottom or on
n,(t), andn;(t) are compared and a population-inversion

87 T T T T

1

Y | BARR L Ty, DR

YT~ R

08 0.01 acacieis

s 0.005
06—

n(t)

0

&

04 -0.005 L | | | |
3 2 1 0 1 2 3
2k -
2
02 - |
0 | N "
-4 2 0 2 4

¢
' FIG. 9. The figure plots the populationg(t) (solid ling), n,(t)
FIG. 7. Poincaresection aif=1.09 andé,=—0.002 relative to  (dashed ling andn,(t) (dotted ling, as a function of the time, for
orbits close to a SDW fixed point. the chaotic trajectory shown in Fig. 8.

046227-8



CHAOTIC BEHAVIOR, COLLECTIVE MODES, AND. .. PHYSICAL REVIEW B57, 046227 (2003

e =

n(t)
n(t)

2F -
NPT WP VP P ST ST S FNCV I Y WINPT N WA L | 1 1 L 1 1 L
0 05 1 15 2 2.5 J3 % 0.5 1 15 2
t t
FIG. 10. Populations of the three condensatggsolid line), n, FIG. 13. Temporal bghavior of the condensates_’ populations re-
(dashed ling andn; (dotted ling as a function of the time for a lated to_ the regular trajectory of Fig. 12. The sc_Jlld, dashed, and
regular trajectory of the zoom shown in Fig. 7. dotted lines refer tay(t), n,(t), andns(t), respectively.
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L . ' o FIG. 14. Condensates’ populations, as a function of the time
FIG. 11. Poincaresection firmed by the conditiong,= . . ! . '
—0.295 andc~0.73. close to a dimerlikegladdle) fixed poin;gz related to the chaotic trajectory of Fig. 12. The solid, dashed, and
’ o ' dotted lines refer tay(t), n,(t), andng(t), respectively.
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FIG. 12. This figure shows a regular trajectory and a chaotic one FIG. 15. Poincaresection firmed by the conditiong,=
chosen among those of Fig. 11. —0.005 and€=0.91, close to a saddle dimerlike fixed point.
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FIG. 16. This figure shows a regular trajectory and a chaotic one F|G. 18. Condensates’ populations, as a function of the time,
chosen among those of Fig. 15. related to the chaotic trajectory of Fig. 16. The solid, dashed, and

the top of the figure, but dynamics never connects the tob"”‘e" lines traces (t), ny(t), andns(t) respectively.

orbits with the bottom ones. This feature is confirmed by the
time behavior(see Fig. 1Y of n;(t) related to the regular

trajectory of Fig. 16. In Fig. 17, the presence of the ga
betweem,(=0.5) andn,;,n; (=5) indicates a macroscopic
self-trapping effect. The latter differs from the dimerlike self-

:Lzrt)pr:ngn regfxfg :2 dSeegnliI;{bV;Qiﬁ:%o:nzsaH‘I’P](la:snc:géngrio behavior thus suggesting that a weak stochastic feature oc-
1773 P P ' currs on such trajectories. It is worth mentioning that the

just described no longer holds for the chaotic orbits: Figure . . , .
18 shows arintermittenteffect of population inversion be- analysis of regular and chaotic motions in the H@ could

. ; be performed quantitatively within a recently proposed geo-
Chaotc srbit of Eig. 16 are distribired intermiltenty both in MeUiCal famework 1o tackle Hamilonian cha20,23. In
the higher and in gtﬁe lower part of the PS y particular, a system described by a Hamiltonian quartic in the
The trajectories near the maximume co.nsider the case momenta(which is thus of the same type of the trimerlike

£,-0.999. £,~0.998, ¢b;— — ¢b,—1r.) appear to be regular one would require the use of Finsler spad@®]. Such an

. interestin ibility is under activ nsideration.
as one can deduce from Fig. 19 that shows PS close to ate esting possibility is under active consideratio

maximum fixed point with{,=0.8 andé=1.7. In this case,
populationsn, (t), n,(t), andng(t) display in Fig. 20 a pe- VI. CONCLUSIONS
riodic effect of population-inversion involving nq,n,,
whereas the fact that;,n, <n; entails an evident self-
trapping phenomenon.

The averages of the MLEs calculated for the chaotic or-
bits are 0.74Fig. 3), 0.42(Fig. 7), 0.29(Fig. 11), and 0.96
p(Fig. 15. The evaluation of the MLE for the regular trajec-
tories described in the previous examples well as for
those of Fig. 1 and Fig. 2%xhibit the expected decreasing

In this paper, we have focused our attention on the struc-
ture of the phase space of “classic” trimer, that is, the mean-

7 T T T T r r 1

095

n(t)

0.85

0.8

FIG. 17. Temporal behavior of the condensates’ populations re- FIG. 19. Poincaresection near a maximum &=1.7 and¢,
lated to the regular trajectory of Fig. 16. The solid, dashed, and=0.8. In the neighbourhood of the maxima the phase space trajec-
dotted lines trace(t), n,(t), andns(t), respectively. tories are regular.
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10

separates the oscillations af from those ofn;, ny (j,k
#1) thus generating self-trapping;, n, show independent
oscillations (in Sec. VI configurations witi =2, j=1, k
=3 has been consideredThe gap disappears for chaotic
orbits.
6 - (iii) Orbits with SDW-like ICs also display both regular
and chaotic behaviors but their ICs are not separated spa-
tially. The regular orbits we have considered keep the
memory of the IC since one of the three wells remains al-
. most empty(pure dimey while the other two undergo regular
. _ oscillations. Such states identify essentially witktlike
states and manifest a stable character. An exampthads
emergencewhich starts with a macroscopic population in-
version entailing the filling of thdinitially) depleted well,
has been detected by assuming various SDW-like ICs involv-
ing chaotic orbits.

FIG. 20. Time evolution of the condensates’ populations related (iv) Regular orbits generated by dimerlike 1@slated to
to a motion with initial conditions close to a maximum state con-the second saddle pojrexhibit periodic oscillations of;'s
figuration. The figure shows(t) (solid line), ny(t) (dashed ling  with an evident self-trapping. Chaotic orbits, instead, give
andnj(t) (dotted ling. The motion appears to be regular. rise to oscillations displaying self-trapping on short-time in-

tervals andintermittent population-inversion effects. ICs

field form of the model describing three interacting BECs.close to the maxima further generate regular orbits with self-
Our analysis puts in light, on the one hand, the remarkabl&apping. The corresponding states display the presence of a
complexity that characterizes the trimer dynamiog com-  unique almost filled wel[23].
parison with the integrable dynamics of the dimer system  The scenario just depicted supplies a rich account of prop-
on the other hand, the phenomena that are expected to ch&#ties, behaviors and possible observable effects issuing from
acterize theM-well chain of interacting condensates. In view trimer dynamics and suggests promising future develop-
of the recent experimental results, the phenomenology of thigients.
system seems more and more viable to experimental obser- We emphasize the fact that= T/NU is the parameter that
vations. Trimer dynamics has been investigated within aactually characterizes the dynamical behavior and that the
semiclassical Hamiltonian picture, reviewed in Sec. Il andchanges ofr can be caused by varyirld, T, andN. While
developed in previous papers, based on a coherent-state rgpe ground state, the vortex states, and the SDW sfaés
resentation of the trimer quantum state. Egs.(4), (6), and(8), respectively have been shown to be

The identification of the set of fixed points of trimer independent, dimerlike fixed points have revealed a complex
Hamiltonian equations and the fact that such points are asiependence om. The interesting result of Sec. Il D is that
sociated to periodic solutiongollective modepof several for 7<<7, one finds two distinct saddles,(q,), A,(g,) and
types represents the initial, central result of our paper. Tha maximumAs;(p) [such configurations are defined explicitly
presence of the constraiNt= const entails that the states that via Egs. (10)—(13), while the r-dependent parametets ,
stationarize the Hamiltonian are not isolated points but perig,, and p were derived in Appendix B whereas, forr
odic orbits (one-dimensional manifoldlsThe solutions thus >, , only the Az(p) survives. This effect might have a
found enlarge the set of exact solutiqd4,13 pertaining the  macroscopic character since ti#g-A, coalescence forr
dimerlike integrable subregimes of trimer and exhibiting a=r, is expected to cause chaos supprest&ee Sec. |11 D.
parameter-dependent self-trapping effect. The basic configurationgground state, vortex states,

Based on the second variatiGnith N=const) of the en- SDW states, and dimerlike states involving both saddle and
ergy function around its fixed points, the character of themaximum points recognized in the present work, and the
latter has been recognized in Sec. IV and Appendix Dcomplexity of dynamical regimes, both chaotic and regular,
thereby revealing the presence of several saddle points arnidat develop in their neighborhoods deserve further investi-
maxima, in addition to the expected ground state. Numericagations in two directions at least. First, classically, one
simulations and the PS method have furnished a wide sceshould carry out a systematic stu¢hequiring huge compu-
nario of trimer dynamical behaviors whose possitii@aotic  tational resourcef long-time behavior of dynamical states
character has been tested by measuring the maximuwf interest to disclose further macroscopic effects. For the
Lyapunov exponent. We summarize the results of our dysame reason, a larger number of I@sgether with the tra-

ngt)

namical simulations. jectories thus issuedshould be considered near fixed-point
(i) The orbits that have ICs close to ground-state exhibit aonfigurations.
regular behavior with periodic oscillations of populations We point out the fact that predictions on the dynamics of

(i) On the contrary, orbits with vortexlike I@hamely, phases ¢; should be important in relation to phase-
based at points close to vortex fixed pojrdise, in general, interference experimenf8]. This aspect, which has not been
chaotic. Regular orbits, however, are found at sufficient disdeepened in the present work, requires a separate analysis
tance from vortex fixed points. For such orbits a stable ga@and further numerical study directed to detect phenomena
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exhibiting phase coherence and their stability in proximity of =~ APPENDIX B: DERIVATION OF DIMERLIKE FIXED
states endowed with ordered phase configurations such as POINTS

vortex states ¢;=27k/3, k=1,2), SDW states ¢; — ¢;
=, i#], |z/=0 with i,j#k), and dimer configurations
(¢i=¢;, z#2z=2z with i,j #k).

Second, in view of the possibility of realizing systems
with small per-well populations, the pure quantum approach T
to trimer dynamicgalong the same lines of previous work 2U(x1 x3)—
directed to study the spectral properties of dirs¥ems to
be quite natural32]. The study of quantum trimer might put
in evidence unexpected effects caused by the competition
chaotic(classical behavior and integrabl@uantum behav-
ior on the borderline of appropriate mesoscopic regimes . _ .
where the transition from quantum to classical dynamics x,=NRcosha, x3=NRsinha,

takes place. (B2)
P x,=NRsinhgB, xs=+\NRcoshg,

Because of the identificatior;=x, (characterizing di-
merlike fixed pointg Egs.(A3) and (A4) become a unique
equation that can be written as

1+——2—

X (B1)

siuch an expression suggests two possible ways to param-
etrizex,, Xs,
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[the first formula comes from the constraint on the total num-
APPENDIX A: DERIVATION OF FIXED POINTS ber of bosons, the second one comes from E3)],
whereas the second choice gives
Equationg3) can be simplified by noting their invariance
under the global symmetry transformatiap— z, exp(®)
and the fact thaz,/Z< R (wheneverZ+#0) with £=1,2,3.
Then one can set,=x, exp(®P), where thex, are real num-
bers andd is an arbitrary phase, thus reducing E@.to a
system of the three real equations

2
Re=— P

———, R?’=
1+2p?

7-2 11 B4
Zp__ﬁ‘ (B4)

where 7:=T/UN, gq=tanha, p=tanhg, and «,8eR. Sys-
tem (B3) reduces to the cubic equation

T T
Ej(X)’=(2UXj2—M+E)Xi—EXEO’ (AL) 7(2+9?)(2+q) +4q(1+q)=0, (B5)

with j=1,2,3 andX:=x;+X,+x3. When the conditiorx; which, providedqe[—1,+1] in order to ensure the condi-
#0 fori=1,2,3 is imposed, the latter equations can be recadion R?=0, supplies either two or none solutions, depending
in terms of an equivalent system of three equations one o®n the fact thatr<r, , 7>r7, . By solving the system one
which fixes the Lagrange multiplige, while the other two, ~finds that the two roots|,(7), »=1,2 range il —1,0] and
now formulated in au-independent form, determing, x,, fulfil the conditions

X3 thanks to the further conditioN = const. In fact, the sum .

of the quantitiesEj(x)/x; can be set equal to zero provided —1=q;=Q,<0 for Os7<7",

x;# 0 thus giving the equation
) gving g T with q1(7) =q,(7) for 7=7*. The parameter, is identified

3u=2UN-= > X=X _ (A2) by imposing, in addition to EqB5), the requirement that the
29 X two g-dependent functions of Eq$B3) (that is, the two
right-hand sidesbe tangent at some point,

Moreover, from E{(X)/x;—E»(X)/xo=0 and Ej3(X)/X3

—E,(X)/x,=0 one obtains —6q .
2 e At (B6)
0=(Xp=x1)| 2U(XpX0) + 5= (A3) (2+0%) q
Equations(B5) and (B6), solved numerically, supply the
value 7* =0.297 18.
0=(Xz=X3)| 2U(Xo+X3) + 5 —~ X3Xg (Ad) Such a structure does not characterize sy, which
always exhibits a single solution for some appropriate value
completed by the conditiohl=x§+x2+x3. in the sectop e[ —1/2,0] obtained from the equation
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7(1+2p?)(1+2p)+4p(1+p)=0. (B7) double sign=* in parametrizationgB9) entails that each
curveP; (P=A,B,C) is formed by two disjoint curves. For
In view of the restrictiong,p<0, from definitions(B2) one P, (P=A,B,C) one has
deduces that the fixed-point coordinates are such xpat
<0. The three solutionsj;(7), q,(7), p(7) just obtained aze[—VN/6,0, aze]0,VN/6],
correspond, within the space of coordinatgs,,x,,x3)}

=R3, to three vectors expressed as while for P, andP, (P=A,B,C) the two disjoint branches

are originated by the mappings— P, with
- _ _ 2
Au=(ag,ar, ~ (@ /|ay]) YN —2a)), a, e[~ NI2,—N/3], a,e[ N3, N/2].

As:=(a,,a,,—(a,/|a )\/N—Zaz), (B8)
2=(32:82.~ (2/]2d ? APPENDIX C: DIAGONALIZATION OF M,

Az=(a3,a3,~ (as/|as|) yN—2a3), The diagonalization process &, allows one to prove
h that one of the eigenvalues is always zero. From the standard
where condition detM ,—\)=0, one obtains the eigenvalue equa-
Np? 1/2 112 tion (upon introducingA :=2\/T)
asz= * > a,= * 2 y (Bg)
1+2p 2+q, A3+ [ 8| A2+ (8,8,+ 8,05+ 8381~ 3)A+ 6,6,85+2
J

with g,, p solving Egs.(B5) and(B7). One can easily check
that the twor-dependent curve8, and A, can be seen as —2 5=0 (C1)
two branches of a unique curve based at the common point ~
A1(g1) =A5(qgy) for 7=7*, where they join smoothly.
Dimerlike fixed points become nine when considering thewhere 6,6,63+2—2%;6;, upon settingd;= — (X, + X\)/X;

further set of points generated by index permutations owing to Egs.(Al), can be shown to vanish in virtue of the
identity
By:=(a;,— (a;1/|a1) VN—2aj,ay), N .
Xe+ X )IXi=2+ Xe+ X)X .
By:=(ay, — (a/|ay]) YN—2a3,ay), (B10) H (Xe+i1X, 2 (Xe X007
Bgz=(a3,—(a3/|a3|)~/N—2a§,a3), The superscript symbol * recalls that the indiggsk, andj
must differ the one from the other. Hence, as a general result,
Cy=(—(ay/|a])yN—2a7,a;,a,) the diagonalization oM, entails the presence of a zero ei-

genvalue consistent with the analysis of dynamics in the re-

e 5.2 duced phase space, developed in Sec. V. In view of the
Coi=(=(az/lazl) YN —223,2;,27). (B1D) matrix-trace invariance, one also finds

C32:(—(a3/|a3| \ N_2a31a31a3)1

related to the subcasas= x3#X, andxz= X,# X;. Such
nine curves become actually six. Our previous observation T
on consideringh; andA, as a unique curve, in fact, readily =_
extends the curveB;, B,, andC,, C,. Due to the double 2
choice = in Eq. (11) such curves are 12.

In order to visualize the dimerlike fixed points, one can
plot their position vector\,, B,, C,, £=1,2,3 within the T
three-dimensional space by varying their parameterg¢ AV=Z[—Ai V(A)?—4(A 15— 3)], (C2
=1,2,3) in the appropriate range. As noted above, in the case
7<7*, for g ranging in the interval — 1,0], Eq. (B5) exhib- where,A=3,,8 andA 3:=3,6,8,85/5,, andv=1,2, [\,
its two solutions, whereas, for any Eg. (B7) admits one (\,) is joined to— (+) in Eq. (C2)], issue from the qua-

solution with pe[—1/2,0]. The corresponding ranges of qratic equation that emerges from EG.1) when removing a
variation fora, (v=1,2) anda; are factor A .

N N N
—<la|= _ o<la.l= — APPENDIX D: FIXED POINT CHARACTER
3 % 2’ s 6’

This appendix is devoted to recognizing, case by case, the
respectively. The representation of the position of dimerlikeminima, the maxima, and the hyperbolic points within the
fixed points on the sphen@ixiz:N provides arcs that never four (class of states identified as fixed points. Concerning
intersect the one with the other whemanges i 0,»]. The  the eigenvalues of matrild, one must take into account the

3 T 3
2 )\J:_EE 5j—>)\1+)\2
j=1 j=1

X¢+ Xk

(=—3u+2UN),

while the two roots
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restriction on the displacemeng from v; induced by the
constraintN= 3|z |?= const. After recalling that the phase
of v; can be absorbed, for eachby &; due to its arbitrari-
ness, the substitution;— x; implies that

N=2 [&+x[°=2 [|&[*+2ax+x{],

which, in turn, entailsZ;|&]%2+2qg;x;=0, namely—to first
order—the plane equatiogx;+g,X,+03X3=0. It repre-
sents the restriction on the displacements that variaf)les
are allowed to effect. Substituting; with g;=—(x,q;
+X0s)/X;, wherer,s#i (and the choice of depends, in
general, on the conditior, # 0) finally gives

XX T(X, +Xs—X;
h(q;6U,T,u)= 2;—;<6UX?—M>+%S') A ds
i i
X.
+3 | 1202 E ety + T 2.
jZi X; Xi
(D1

1. Ground-state case

These fixed points are characterized by the fact xhat
+N/3 for j=1,2,3, andu=2UN/3—T. By inserting this
solutions in Eq(18) one obtains the Hamiltonian written as

4UN-i—T
3

3
T
- 2 2| _

3

X 2 (pipj+aid;),
i#j=1

PHYSICAL REVIEW E67, 046227 (2003
whereas from Eq(D1) one gets
h(q;6U,T, ) =8UN(q7+q5+010,)/3>0,

whose eigenvalues are always positive. Vortex configurations
are therefore saddle points.

3. SDW case

The previous analysis shows that tffexed poiny con-
figurations in which one of the three well is depletedg.,
well i=2) is such thaix,=0, x;=—Xx3=*/N/2 (-state
structure, andu=NU+T/2. Site index permutations allows
one to obtain two further, similar cases. In these points,
Hamiltonian(18) can be written as

3 2
.
H3=EdW+UN[2<qi+q%>—q§]—5{(; qi)

+

In this case, the constraint on the total number of particles
supplies the constrainE’_,(pf+q7) = v2N(q; —03) =0,
which reduces t@; —gq3;=0 wheng;,p;=0. Then}; takes

the form

22 2 T 2
Hz=Egw+UN(497—q3) —UNp;— 5[(2(11"'(12)

+(p1+p2+pa)?l, (D3)
whose Hessian matrix is endowed with the eigenvalés
—57+/5(20—- 127+ 57%))UN/4} and {0,—(2+37
+J4—47+97%)UN/4} for the g-dependent part and the

where Egs is the ground-state energy defined previously.p-dependent part, respectively. The analysis of the signature

Then, by taking the constrain*tl=Ej3:1|zj|2 into account,
one obtains=;_,[qf+pf=2yN/3q;]=0. For little dis-
placements fromg;=0=p; the latter equation reduces to
37_,0;=0, which implies that

8UN-|—3T
3

Ha= Egs+( (ai+0a5+0:0,)

3 T 3
+T 2, p?—;E Pip; - (D2)
=1 i#j=1

of such eigenvalues leads to identify the fixed points of the
empty-well case with saddle points.

4. Dimerlike case

In the dimerlike case, the conditions on the coordinates
are x:=X;=X,# Xz=:y (none vanishing Furthermore, one
has to impose the condition (D(jz_M)Xj:T/zEk¢ij on
the Lagrange multipliejx that becomes

u=[2UN—-T(1+y/x+xly)]/3. (D4)

The eigenvalues of the Hessian corresponding to thge; s start by analyzing the Hessian eigenvalues of Hamil-

g-dependent and the-dependent part ofHz; are {(37
+8/3)UN/2,(97+8)UN/2} and {0,3T/2,3T/2}, respec-

tonian p sector, namely, of Eq.20). These eigenvalues are
given by Eq.(C2) and one has that whenever the teom

tively. They are positive, coherent with the fact this is Q.= (8,8,+ 5,85+ 556,—3) is greater then zero, these eigen-

minimum.

2. Vortex case

The conditiongx;|?=N/3 andu = (4NU+3T)/6 charac-
terize vortex configurations. One thus finds

h(p;2U,T, 1) =—T(p;+ p,+Pp3)?/2<0,

values are negative. To verify the conditior0 one can
proceed in the following way. First, one substitutessirthe
o; written in term of their definitions; namely, in term pf,
T, U and the fixed-points coordinatesy, Second, one
writes x in terms ofx, y and, etc[Eq. (D4)]. Finally, one
eliminates the dependence gny, andT in ¢ by choosing
either the parametrization
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yIx=q, x==N/(2+¢?), invertible. Dimer configurations with an empty well provides
an explicit example where transformatiof®&3) are ill de-
combined with Eq(B5) to express theg dependence of, or  fined. In fact, fixed points

the parametrization
(z) = (yN/2 expi ¢,0,N/2 expi(p+ 7))
xly=p, x==+Np%(1+2p?), )
correspond to the s€(0,0,x,7m— x)|V x}, in the new de-

combined with Eq(B7) to express thg dependence of. scription. As regards dynamical applications, fortunately, this
The expression fos- achieved in such a way dependseor ~ problem is bypassed because the trajectories chosen near the
p, respectively. One can show that both the expressions aigeriodic orbits associated to this kind of fixed poifds well
always positive in the range of definition qf([ —1,0]) and as the PS used to study the dynamics near the same fixed
p ([—1/2,0]), which means that eigenvalug¢€2) are all point9 do not contain, by construction, such pathological
negative. points. Upon settingp,:=¢1+ ¢,, s:=UNt, the motion

As usual, for working out the Hessian eigenvalues ofequations in theeducedphase space are given by
Hamiltonian(19) related to they part of the original onze, itis do Tre
necessary to take into account the constraiffz;|“=N 1 T [1+&
=const. The latter, in the present case, becomes—(q; gs 1T2atéet; & — gzcos¢2
+0,)x/y. By means of this condition, one can reduce the

dimension of the eigenvalues problem related to Ed) (1—2&,+ &,)cos¢, 1+ &,
from 9 to 4. The Hamiltoniam,(q;,9,,U,u,T) thereby ob- + G-t -V 1-¢ COSd1;|,
tained can be further simplified via the substitutiqas» u (1=&)(61= &) !
=[2UN-T(1+y/x+2x/y)]/3 andy/x=q or x/y=p, de- (E2)
pending on the parametrization one adopts. With the first
choice {/x=q), and relying on Eq{B5), one finds two de, —&1
Hessian eigenvalues one of which is always positive, while ~ ~qg — 17 é1+2&% 5| \ 7 =, €OS¢1
the other has an ill-defined sign in the domaje [ —1,0].
By using 'ghe second parametr'izatioyfyzp and Eq.(B7), (1— & +2£,)c08h, 1-&
both the eigenvalues thus obtained can be proven to be nega- + ~V1i7 COSd15|,
tive for pe[ —1/2,0]. In summary, in the dimerlike case, for V(€= &2)(1+ &) &
0<7<7*, one has two saddle points and one maximum (E2)
point; for 7* <7, instead, fixed points reduce to a single
maximum point. d

i T &) Esings

APPENDIX E: REDUCED PHASE-SPACE DYNAMICS

+ V(1= €1)(1+&y)sindy,, (E3

The fixed-point configurations corresponding to the

change of Hamiltonian variables, z* — &, ¢,, N, & are dé, )

obtained from the equations of motion rewritten in terms of s~ Ve~ &)(1+E)sing,

the new variablegsee below. Coordinates transformation

(23) can exhibit(isolated singular points where they are not +7V(1—=€&1)(1+&5)sind,. (EQ)
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